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Abstract 
 
     Over the last decade, much effort has been devoted to unraveling the genetics of osteoporosis-related 
traits. Although progress has been slow, a number of significant advances have been made recently through 
the use of genome-wide association (GWA) approaches. Despite these successes, however, our 
understanding is still very incomplete. Global gene expression data are starting to be used to improve gene 
discovery and elucidate the mechanisms underling genetic associations. This Perspective focuses on these 
“systems genetics” approaches and how they are being used to complement and enhance genetic analyses 
and improve our understanding of osteoporosis. IBMS BoneKEy. 2010 October;7(10):353-363. 
©2010 International Bone & Mineral Society 
 
 
Introduction 
 
Osteoporosis is a disease of weak and 
fracture-prone bones that affects 
approximately 200 million people worldwide 
(1). It is characterized by low bone mass, 
coupled with the microarchitectural 
deterioration of bone, which results in an 
increased risk of fracture (2). Fractures are a 
significant public health burden in large part 
because they are associated with increases 
in morbidity and mortality (3). Many intrinsic 
characteristics of the skeleton contribute to 
bone strength including bone mass, size, 
morphology and material properties (4). 
Although such traits are influenced by both 
the environment and genetics, heritability 
estimates generally exceed 50%, suggesting 
that osteoporosis is primarily a genetic 
disorder (5). As an example, the heritability 
of BMD at various anatomical sites is 
commonly estimated at upwards of 80% (5). 
These data indicate that a thorough 
understanding of osteoporosis will require 
the genetic dissection of its component 
traits.   
 
 
 

Genome-wide Association Studies 
 
Over the last three years, osteoporosis 
genetics has entered a new era – the age of 
genome-wide association (GWA) (6). GWA 
studies are performed by genotyping 
hundreds of thousands of single nucleotide 
polymorphisms (SNPs) in thousands of 
unrelated individuals (7). Significant 
associations are identified by comparing 
SNP allele frequencies in cases (e.g., 
individuals with fractures) versus controls 
(e.g., individuals without fractures) or 
associating SNP genotypes with a change in 
a quantitative trait. To date, ~40 unique loci 
have been identified for areal BMD, bone 
size and geometry using GWA (6). These 
findings have confirmed the role of genes 
such as the estrogen receptor (ESR1), 
tumor necrosis factor receptor superfamily, 
member 11a, NFκB activator (TNFRSF11A; 
RANK), tumor necrosis factor (ligand) 
superfamily, member 11 (TNFSF11; 
RANKL), osterix (SP7), among many others, 
that were first determined to affect bone 
through functional and candidate gene 
studies (6). Importantly, many of the GWA 
loci implicate novel genes that have not 
been associated previously with 
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osteoporosis-related traits and their 
validation will likely reveal novel biological 
processes that impact bone. Thus, GWA 
studies have and will continue to 
revolutionize the genetic analysis of 
osteoporosis-related traits. 
 
Although GWA studies have resulted in a 
treasure trove of novel high-resolution 
genetic associations, the initial studies have 
also highlighted drawbacks of GWA studies 
and all strict “genotype to phenotype” 
approaches. One of the most significant 
drawbacks is that the GWA variants 
identified for bone traits to date account only 
for a small portion of the estimated 
heritability (8). A recent meta-analysis of five 
BMD GWA studies comprised of nearly 
20,000 individuals identified 20 significantly 
associated SNPs (9). However, these 
variants in aggregate only explained 2-3% of 
the total variance in hip or spine BMD, 
suggesting that bone traits are far more 
genetically complex than originally thought 
(10). It is possible that hundreds, maybe 
even thousands, of common and rare alleles 
affect fracture risk, each accounting for a 
tiny fraction of the variation in BMD at the 
population level. A second, equally 
important limitation of GWA studies is that 
they do not provide information on the 
function of associated variants. The use of 
approaches that both improve variant/gene 
discovery and provide physiologically 
relevant information on their function will 
enhance basic bone biology and aid in 
converting genetic discoveries into new 
therapies. 
 
Systems Genetics 
 
Cellular systems are comprised of a series 
of components (11). Examples of 
components include the genome, 
transcriptome (all transcribed sequences), 
proteome (all proteins) and metabolome (all 
metabolites). Deficiencies in bone cell 
function are the result of genetic and 
environmental perturbations that disrupt 
individual component function or 
component-component interactions. Thus, 
qualitative and quantitative information on 
these various entities can be used to 
determine how DNA variation alters cellular 

function. A few components besides the 
genome, most notably the transcriptome 
(due to the widespread application of DNA 
microarrays), can be assayed in a global 
high-throughput manner. The evaluation of 
global gene expression data in the context 
of a genetics study is generally referred to 
as systems genetics. This approach is 
particularly important given that regulatory 
polymorphisms, and transcriptional 
perturbations that arise from structural 
mutations, play key roles in modulating 
complex diseases (12). Moreover, a number 
of bone-related GWA associations map to 
regions devoid of protein-coding genes and 
are presumed to be due to regulatory 
polymorphisms (13). There are a number of 
analytical approaches that can be used to 
analyze systems genetics data, such as 
expression SNP (eSNP) identification, 
causality modeling and network analysis 
(14).   
 
Gene expression traits derived from DNA 
microarrays can be mapped by GWA or 
linkage analysis in a way that is identical to 
any other quantitative physiological trait 
(15). Thus, one can identify genetic loci or 
associations that regulate gene expression 
on a genome-wide scale. In the context of a 
GWA study, these associations are referred 
to as eSNPs. In a linkage analysis, they are 
referred to as expression quantitative trait 
loci (eQTLs). To avoid confusion, this 
Perspective uses the term eSNPs to refer to 
both.   
 
There are two types of eSNPs, local and 
distant (Fig. 1) (16). Local eSNPs lie in close 
proximity to the gene they regulate, while 
distant eSNPs are removed from the 
structural gene whose expression they 
control. Examples of local eSNPs would 
include cis-acting polymorphisms in a gene’s 
promoter or intronic regulatory region that 
alter transcriptional kinetics or exonic 
mutations that alter mRNA stability. In 
contrast, distant eSNPs are trans-acting 
transcriptional regulators. An example would 
be a transcription factor on human 
Chromosome (Chr.) 2 that affects the 
expression of both alleles of its target gene 
on Chr. 10. Examples of local and distant 
eSNPs for the expression of genes that play 



IBMS BoneKEy. 2010 October;7(10):353-363 
http://www.bonekey-ibms.org/cgi/content/full/ibmske;7/10/353 
doi: 10.1138/20100468 
 

     
355 

 
Copyright 2010 International Bone & Mineral Society 

 

key roles in bone development are provided 
in Fig. 1A and Fig. 1B. Importantly, eSNPs 
connect DNA variation with a specific 
cellular function and, as will be highlighted 
below, this information can be used to 

elucidate the mechanistic underpinnings of 
genetic associations. How eSNP 
identification is being used to advance 
osteoporosis genetics is specifically 
discussed below. 

 

 
Fig. 1. Local and distant eSNPs affecting the expression of genes that play a key role in bone development.  
A GWA analysis was performed for Tnfrsf11a, Bcl2 and Sost in cortical bone samples (femoral diaphysis 
free of marrow) from the Hybrid Mouse Diversity Panel (HMDP) (17). The HMDP consists of ~100 inbred 
strains that have been genotyped at ~135,000 SNPs. Manhattan plots showing that (A) Bcl2 and (B) 
Tnfrsf11a expression in bone is regulated by local eSNPs. Manhattan plot showing that (C) Sost expression 
in bone is regulated by distant eSNPs. In all three plots the association between SNP genotypes and gene 
expression is plotted as the –log10(P-value). The red bars signify the genomic location of each respective 
gene. The dotted line represents the genome-wide significance (P < 0.05) threshold. 
 
Using eSNP Data to Inform Genetic 
Studies 
  
This section identifies studies that have 
used eSNP information to determine the 
most likely causal genes underlying GWA 
loci and a potential mechanism of action for 
the associated SNPs. This discussion 
should be prefaced by mentioning that many 
of these studies have used data on 
lymphoblastoid cell lines (LCLs), due to the 
availability of such data from a large number 

of eSNP studies that can be easily obtained 
through public databases (examples include 
raw expression data from NCBI’s Gene 
Expression Omnibus database 
(http://www.ncbi.nlm.nih.gov/geo/) and 
eSNP analysis results from the eQTL 
browser (http://eqtl.uchicago.edu/cgi-
bin/gbrowse/eqtl/)). While this may seem like 
a somewhat irrelevant cell-type for bone it is 
possible that a gene regulated by a local 
eSNP in LCLs will also be regulated by the 
same local eSNP in bone cells or a bone- 
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relevant tissue/cell type. There are studies 
that have identified eSNPs in bone-derived 
cells such as human primary osteoblasts 
(HObs) (18). While it will be difficult to collect 
it is likely that systems genetics data on a 
wide array of tissues (e.g., whole-bone from 
multiple anatomical locations) and cell types 
(e.g., osteoblasts, osteoclasts and 
osteocytes) that are relevant to bone will be 
much more informative for osteoporosis 
GWA studies.   
 
A number of osteoporosis GWA studies 
have used eSNP data to query the function 
of associated variants. One of the first GWA 
studies to include eSNP data was by 
Richards et al. in which the authors 
identified a SNP (rs4355801) located 
upstream of tumor necrosis factor receptor 
superfamily, member 11b (TNFRSF11B; 
osteoprotegerin (OPG)) that was associated 
with BMD and risk of osteoporosis (19). 
Using microarray data from LCLs from 55 
unrelated HapMap individuals, it was 
determined that rs4355801 was also a local 
eSNP regulating the expression of 
TNFRSF11B. These data are consistent 
with the observation that perturbing the 
expression of Tnfrsf11b in knockout and 
transgenic mice alters bone mass (20;21). 
Similarly, in a large meta-analysis of five 
BMD GWA studies, Rivadeneira et al. 
identified 20 loci affecting BMD, of which 13 
were newly identified (9). Using microarray 
data on primary human osteoblasts, SNPs 
within three of the 13 novel loci regulated 
the expression of the genes (G protein-
coupled receptor 177 (GPR177), myocyte 
enhancer factor 2C (MEF2C) and forkhead 
box C2 (FOXC2)) nearest the most 
significant SNPs. Kung et al. used 
quantitative real-time PCR to identify that 
the SNP rs2273061, which was strongly 
associated with BMD and located in the third 
intron of the JAG1 gene, regulated the 
expression of JAG1 in human-derived bone 
cells and peripheral mononuclear blood cells 
(22). Additionally, Hsu et al. recently 
identified seven loci affecting BMD and/or 
femoral neck geometry (23). Three of the 
top seven SNPs were also found to be 
eSNPs that regulated the genes (RAS-
related protein-1a (RAP1A), TBC1 domain 
family, member 8 (with GRAM domain) 

(TBC1D8) and TNFRSF11B) nearest the 
trait-associated SNPs. The identification of 
SNPs associated with bone traits that are 
also eSNPs not only suggests a mechanism 
of action, but it also identifies the individual 
genes within associations (which typically 
implicate more than one gene) that are most 
likely responsible for the associations.   
 
In addition to determining if SNPs 
associated with bone traits potentially do so 
through changes in gene expression, it is 
also possible to inform GWA studies by 
doing the reverse: identifying eSNPs first 
and then determining if they affect a clinical 
bone trait. There have been two recent 
studies, from the same group, that nicely 
outline this approach (18;24). Both studies 
utilized microarray data generated on HObs. 
In the first study, a total of 95 HOb samples 
were assayed using DNA microarrays (18). 
The samples were also genotyped at high-
density. Using GWA the authors identified 
several hundred genes regulated by local 
eSNPs in HObs. Next they cross-referenced 
the list of eSNPs with a list of the top SNPs 
identified in a large BMD GWA study (13). 
They then made two key observations. First, 
there was a significant enrichment of HOb 
eSNPs among those that were also 
associated with BMD. A parallel analysis 
using LCLs did not reveal this enrichment, 
suggesting that it is advantageous to use 
primary bone cells (or presumably bone 
tissue) for systems genetic studies of 
osteoporosis as compared to the more 
assessable cells or cell lines such as LCLs. 
Second, of the top 10 local eSNPs also 
associated with BMD, a variant in the serine 
racemase (SRR) gene was found to 
replicate in two independent studies, 
providing strong support for the hypothesis 
that differences in its expression perturb 
BMD. A similar approach was used in a 
second study of 60 HOb samples that were 
profiled using Affymetrix exon arrays (24). 
Instead of probing the expression of a gene 
with one or a small number of probes, exon 
arrays consist of probes for the majority of 
characterized exons in the genome. Having 
data on all exons allows one to identify 
differentially expressed transcript isoforms. 
In this particular study, these data were 
used to identify a novel transcript isoform of 
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the FAM118A gene whose expression was 
regulated by a local eSNP (rs136564). This 
eSNP was also found to be associated with 
BMD in two independent studies.    
 
In addition to human GWA studies, eSNP 
information can be used in the context of 
mouse linkage studies to identify genes 
affecting bone mass. One approach is to 
compare “expression signatures” that are 
created by BMD QTLs and to experimentally 
perturb individual positional and functional 
candidate genes in the same genomic 
region. If the experimental single gene 
perturbation signature significantly overlaps 
the QTL signature then it is likely to be the 
causal gene. This approach was used to 
identify arachidonate 5-lipoxygenase (Alox5) 
as a BMD gene (25). Linkage analysis in a 
cross between the C57BL6/J and DBA/2J 
mouse strains identified a BMD QTL on Chr. 
6. This locus also regulated in trans the 
expression of nearly 2,000 genes (~10% of 
the genome) in the liver. Of the 172 
positional candidates within the Chr. 6 locus, 
none appeared to be controlling the trait via 
genetically regulated differences in 
expression. Alox5 was the only gene in the 
region to harbor a missense mutation 
between the two strains. By generating an 
expression signature using DNA microarray 
profiles of livers from Alox5 knockout mice 
(Alox5(-/-)), the authors found that many of 
the genes perturbed by the loss of Alox5 
were regulated by distant eSNPs that co-
localized with the Chr. 6 BMD QTL. This 
observation was consistent with Alox5 being 
the causal gene. This hypothesis was further 
supported by the observation that Alox5(-/-) 
mice had reduced BMD. This study 
highlights the fact that gene expression data 
can be used for gene discovery, even when 
the causal variant does not directly affect 
gene expression. 
 
Causality Modeling – Orienting Genes 
and Traits 
 
In GWA studies, the identification of eSNPs 
associated with bone traits is strong 
evidence of a functional connection between 
the gene and clinical trait; however, it is 
possible that the gene’s expression is 
“reacting” to the change in phenotype or the 

two may be completely independent.  
Furthermore, in linkage studies, many genes 
regulated by local eSNPs may reside within 
bone trait QTLs that span several megabase 
pairs (Mbp). Approaches that provide a way 
to prioritize such eSNPs would have the 
potential to be powerful tools for gene 
discovery. 
 
Causality modeling algorithms have been 
developed that allow one to “orient” the 
relationships between variation in DNA, 
gene expression traits and clinical traits (26-
28). To illustrate how causality modeling 
works, consider the simple example of a 
SNP that is associated with both differences 
in a gene’s expression and BMD. We know 
that the flow of information has to begin with 
the SNP (i.e., genetic variation can alter a 
gene’s expression and/or BMD, but changes 
in expression or BMD do not alter primary 
DNA sequences); therefore, the possible 
relationships can be modeled as: 1) causal 
(SNP→Gene expression→BMD), 2) reactive 
(SNP→BMD→Gene expression), or 3)  
independent (Gene expression←SNP→ 
BMD) (Fig. 2A). Probabilities for each model 
can be calculated using likelihood-based 
approaches or structural equation models 
(27;28). Hypotheses can then be drawn 
based on relative model probabilities. 
Typically, the causal model is the one we 
are most interested in because it links a 
gene’s expression to a change in a clinical 
trait; however, the approach can also be 
used to identify “reactive” genes 
downstream of other genes, such as key 
transcriptional regulators. Fig. 2B illustrates 
this latter point by determining (from the 
overlapping local and distant eSNP data 
presented in Fig. 1) that B-cell 
leukemia/lymphoma 2 (Bcl2) expression, 
and not the expression of Tnfrsf11a, is 
predicted to be responsible for the 
alterations in sclerostin (Sost) expression in 
mouse cortical bone. 
 
It is important to remember that causality 
modeling is a statistical prediction based on 
the given data and unknown hidden 
confounders can influence the results; 
therefore, the role of such genes should 
always be validated. We have demonstrated 
recently that 88% (8 of 9) of genes predicted 
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Fig 2. Causality modeling can “orient” the relationships between correlated traits. (A) Example of a SNP 
pleiotropically controlling both the expression of a gene and BMD. This example illustrates coincidence 
between an eSNP and BMD QTL identified via linkage (the same concepts are true for eSNPs and BMD 
associations identified in a GWA study). The coincidence between the eSNP and the BMD QTL suggests 
there may be a functional connection between the gene’s expression and BMD. Causality modeling can be 
used to define this relationship by determining the relative likelihoods for three models: 1) the “causal” model 
that predicts that the gene’s expression is causing a change in BMD, 2) the “reactive” model that predicts 
that the gene’s expression is reacting to a difference in BMD, and 3) the “independent” model where there is 
no functional relationship between the gene’s expression and BMD. (B) Causality modeling applied to the 
eSNP information from Fig. 1 predicted that Bcl2 and not Tnfrsf11a expression was regulating the 
expression of Sost in cortical bone. The causal score is the –log10 of the ratio of causal model probability to 
the probability of the best competing model. A positive causal score of 4.01 for Bcl2 suggests it is regulating 
Sost expression, whereas the negative score for Tnfrsf11a indicates that it is not causal for Sost expression. 
In the case of Tnfrsf11a, the independent model, not the causal model, fits the data the best, hence the 
negative causal score. 
 
as causally linked to obesity resulted in 
differences in fat accumulation in transgenic 
or knockout mice (29). 
 
Our group has used this approach to identify 
candidate causal genes for BMD (30). Using 
an intercross between the C57BL6/J and 
C3H/HeJ inbred mouse strains, we identified 
a total of nine QTLs affecting femoral BMD 
using DNA microarray data from adipose 
tissue. A total of 148 genes, located within 
one of the nine BMD loci, were identified 

that were regulated by local eSNPs and their 
expression was significantly correlated with 
BMD. Using the Network Edge Orienting 
(NEO) causality modeling algorithm (27) we 
determined that 18 of the 148 genes were 
predicted to be causally linked to changes in 
BMD. Many of the genes were highly 
expressed in osteoblasts, suggesting that 
the expression of these genes in bone, and 
not adipose tissue, was actually causal and 
they were detected because their 
expression in adipose tissue and bone was 
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highly correlated. Several of the candidate 
causal genes such as Twist2, Mmp14 and 
Wnt9a are known to be involved in bone 
development (30).  
 
Causality modeling in mice can also be used 
to prioritize candidate genes from GWA 
studies. In a recent large GWA of multiple 
osteoporosis-related traits (23), we used the 
likelihood-based causal model selection 
(LCMS) algorithm (28) to prioritize genes 
within 109 GWA loci that were suggestively 
(P ≤ 5.0 x 10-5) associated with various bone 
traits. Using the same B6 x C3H F2 
intercross described above, we applied 
LCMS to the expression of mouse homologs 
within each association, using microarray 
expression data from various tissues and a 
number of bone traits. In total, 12 genes 
were predicted as causal for at least one 
bone trait. This approach allowed the 
authors to prioritize these 12 loci as the 
most important for future follow-up genetic 
and functional studies. To date, causality 
modeling for osteoporosis-related traits has 
only been applied to mouse data; however, 
causality modeling can be directly applied to 
human data, and with a growing number of 
GWA datasets that include DNA microarray 
profiles it has the potential to help explain a 
portion of the missing heritability for bone 
traits. This approach could be used to ”mine” 
GWA data by identifying the subset of SNPs 
that, due to a lack of power in the GWA 
analysis, failed to reach genome-wide 
significance (e.g., SNPs with P-values less 
than 0.001), but truly alter osteoporosis by 
perturbing a gene’s expression. An example 
of such an eSNP would be the IL-6 -174 
promoter polymorphism that has been linked 
to subtle changes in IL-6 expression, IL-6 
plasma levels and BMD. 
 
Future Directions 
 
The future of eSNP discovery and systems 
genetics will be driven by technology. New 
technologies such as next-generation 
sequencing (NGS) are already making an 
impact. NGS can provide a comprehensive 
digital readout of gene expression (RNA-
seq) as well as elucidate qualitative 
differences, such as alternative splice 
isoforms and chimeric transcripts, for entire 

transcriptomes (31). RNA-seq has been 
used recently for population-based whole-
transcriptome studies to comprehensively 
identify coding SNPs, eSNPs and SNPs 
affecting alternative splicing (32;33). In the 
very near future, as new NGS technologies 
emerge and costs decrease, it will be 
possible to use RNA-seq to characterize 
transcriptomes on a large-scale basis. Such 
data combined with whole-genome DNA 
sequences (also generated using NGS) will 
substantially increase our ability to 
comprehensively catalog polymorphisms in 
the population that alter the transcriptome 
and risk of osteoporosis. 
 
In addition, the collection of data from other 
cellular components will improve. Array-
based and to some extent NGS approaches 
are already being used to identify genetic 
variation that affects DNA methylation and 
its connection with transcriptional alterations 
(34). The incorporation of proteomic (35;36) 
and metabolomic data (37) into systems 
genetics studies is also increasing and this 
will continue with improvements in 
technologies for assaying these 
components. Of course one of the 
consequences of increases in the volume 
and types of data for systems genetic 
studies will be the need for improved 
analytical and computing resources.   
 
One of the obstacles facing human eSNP 
and systems genetics studies of 
osteoporosis is the difficulty of obtaining 
bone tissue (or other non-osseous tissues 
that impact bone, e.g., adipose and neuronal 
tissues) or bone-derived cells from a large 
population of “normal” subjects for genomic 
profiling. It is also difficult to characterize 
large human cohorts for the wide array of 
bone phenotypes (e.g., bone mass, 
morphology, mechanical and material 
properties) that contribute to the risk of 
fracture. Therefore, it is likely that the 
mouse, which is amenable to the collection 
of vast amounts of diverse data and 
biological samples and shares many 
molecular similarities in bone development 
with humans, will play a major role in 
osteoporosis systems genetics. High-
resolution mapping populations such as the 
HMDP (17;38) and the Collaborative Cross 
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(CC) (39;40) will make such endeavors 
much more productive and efficient relative 
to the designed crosses that have typically 
been used for such experiments (30).  
 
Conclusion 
 
GWA is rapidly improving our understanding 
of the genetics of osteoporosis. Systems 
genetics is an approach that has the 
potential to complement and enhance GWA 
through techniques such as eSNP 
identification and causality modeling. 
Importantly, systems genetic studies 
promise to improve our ability to dissect the 
genetic basis of osteoporosis. 
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