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Abstract 
 
     The question that a reader of a randomized controlled trial (RCT) is interested in is whether therapy is 
effective. However, prevailing methodology addresses the opposite question: if the therapy is not effective, 
what is the chance of obtaining the present (or more extreme) data? This current methodology has 
generated considerable confusion and misinterpretation in the literature. In this Perspective, an alternative 
interpretation of major data from RCTs of fracture prevention is offered in light of Bayesian inference, with 
the hope that this approach will be adopted more often in future clinical research studies of osteoporosis. 
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The randomized controlled trial (RCT) is 
now universally accepted as the gold 
standard design to learn about the efficacy 
and safety of an intervention. The efficacy of 
an intervention is summarized in terms of 
the effect size and a measure of sampling 
variability. In anti-fracture clinical trials, the 
effect size is commonly expressed by a 
relative risk (RR) accompanied by a P-value 
and 95% confidence interval (CI). A result 
where the P-value is less than 0.05 (or, 
equivalently, when the 95% CI excludes 1) 
is interpreted as “significant.” On the other 
hand, a result where the P-value is higher 
than 0.05 (or when the 95% CI includes 1) is 
considered “non-significant.” In RCTs, a 
significant result is often interpreted as 
evidence that the therapy is effective, and 
experience abounds with examples that 
editors and reviewers are not keen to 
publish papers if results are not significant 
(P > 0.05).   
 
However, the P-value may be 
misunderstood. In a survey of 397 clinicians, 
only 19% correctly understood the meaning 
of the P-value (1). One of the most common 
misunderstandings of the P-value is that it is 
the probability that the finding is due to 
chance. Thus, a P-value of 0.05 is thought 
to indicate that the probability that the 
therapy is ineffective is 5%, or that there is a 

95% chance of a real treatment effect. 
However, such an interpretation is wrong; 
the P-value tells us nothing about treatment 
effect. When the P-value is used in the 
context of multiple tests of hypothesis, it 
generates additional problems of 
interpretation (2;3). Furthermore, it has been 
shown that most published research findings 
are false (4), and that about 25% of all 
findings with “P < 0.05,” if viewed in a 
scientifically agnostic light, can be regarded 
as meaningless (5) or as nothing more than 
chance findings (6). In an analysis of 45 
original, highly-cited papers claiming 
treatment efficacy published in the New 
England Journal of Medicine, Lancet, and 
JAMA, it was found that 14 (or 32%) were 
subsequently shown to be either 
contradictory or exaggerated (7). Thus, a 
prominent scientist has suggested that “[t]he 
most important task before us…is to 
demolish the P-value culture, which has 
taken root to a frightening extent in many 
areas of both pure and applied science, and 
technology” (8).  
 
The Problem of the P-Value and the 
Confidence Interval (CI) 
 
In order to understand the real meaning of 
the P-value in the context of clinical 
research, it is useful to consider the RCT as 
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a procedure of hypothesis falsification (9). In 
this procedure, a null hypothesis of no 
treatment effect (e.g., a RR equal to exactly 
1) is assumed; data are collected in a 
clinical trial; and, using the data collected, a 
test statistic (e.g., t-test or Chi-square test) 
is computed and compared to the value the 
statistic would take if the null hypothesis 
were true. Thus, the P-value is the 
probability of observing the current data 
(plus other data that are at least as extreme 
as the current data but not yet observed) if 
there was no treatment effect. 
 
The above procedure is similar to the 
process of inductive inference by 
“disproving” a null hypothesis, with three 
premises: (a) if the intervention has no 
effect, then the data (e.g., test statistic) 
cannot occur; (b) the data have occurred; (c) 
therefore, the hypothesis of no effect is 
unlikely. This awkward inference has been 
amusingly illustrated by a hypothetical 
example (10): “If a person is a Martian, then 
he is not a member of Congress. This 
person is a member of Congress. Therefore, 
he is not a Martian.” This one-dimensional 
reasoning can be likened to making a 
diagnosis that a person has a disease just 
because one test result falls outside of a 
reference range! 
 
Recognizing that this one-dimensional 
strategy (of significance testing) is 
untenable, Neyman and Pearson introduced 
the concept of hypothesis testing (11). In 
Neyman and Pearson’s approach, it is 
necessary to define a null hypothesis and 
alternative hypotheses, and error rates are 
established for falsely deciding to reject the 
null hypothesis (type I error or α level) or 
alternative hypotheses (type II error or β 
level) such that “…in the long run 
experience, we shall not often be wrong” 
(11). A test statistic is then calculated from 
the observed data, and compared to the 
critical value from the expected value of the 
test statistic under the assumption that the 
null hypothesis is true. In this formulation, 
the α and β levels are measures of the long-
term behavior of a test statistic; they are not 
thresholds for deciding whether a hypothesis 
is plausible.  
 

The current model of the RCT is, 
conceptually, a hybrid of Fisher’s test of 
significance and Neyman-Pearson’s test of 
hypothesis. This synthesis reconciles two 
differing perspectives on how research 
hypotheses are defined and tested. It adopts 
the Neyman-Pearson convention of two 
competing hypotheses, but one is always 
labeled as the null hypothesis as in Fisher’s 
test of significance. In this realization, 
Neyman-Pearson’s α level is often arbitrarily 
set at 0.05, and a P-value from Fisher’s test 
of significance is compared to the α level. 
This arbitrary α threshold creates confusion 
regarding the real meaning of the P-value. 
Indeed, many problems with the current 
paradigm result from the mixture of two 
incompatible approaches (e.g., test of 
significance and test of hypothesis) (12).  
 
P-value-based inference has been criticized 
for more than 70 years (13;14). Among the 
criticisms that are cited include illogical 
formulation, arbitrariness, and lack of clinical 
relevance. In terms of logic, recall that the P-
value is the probability of getting a result as 
least as extreme as the one observed plus 
the data that are not yet observed. The 
problem with this formulation is that the 
long-run condition of such testing is a fiction 
(because in the real world, nobody would 
repeat the RCT an infinite number of times) 
relative to actual scientific inquiry and 
decision-making. Moreover, the null 
hypothesis is always false, because there 
are no truly zero effects in nature (3). For 
example, in a placebo-controlled trial, it is 
very likely that there is some difference in 
fracture rate between the placebo and the 
treated group. The chance that the two 
groups have the same outcome value is 
virtually zero. Therefore, testing a null 
hypothesis is illogical and impractical.   

 
In terms of arbitrariness, the arbitrary 
threshold of P = 0.05 creates a false 
dichotomy between “significance” and “non-
significance.” Statistical significance or 
insignificance is often equated to clinical 
significance or insignificance. However, 
there is no real scientific basis for declaring 
that P = 0.051 is not acceptable while P = 
0.049 is a reason to be satisfied. Ronald 
Fisher, who developed the test of 
significance and the P-value, selected the 
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cut-off value of 0.05 for convenience: “It is 
convenient to draw the line at about the level 
at which we can say: either there is 
something in the treatment, or a coincidence 
has occurred such as does not occur more 
than once in twenty trials” (15). However, 
Fisher also said that “[w]e shall not often be 
astray if we draw a conventional line at 
0.05...” (16). However, in the real-world 
setting of clinical research, outcomes with 
statistical significance (P < 0.05) have 
higher odds of being published than 
outcomes where P > 0.05 (17;18). As a 
result, many researchers tend to regard data 
analysis as a means to obtain a statistically 
significant end. However, some authors 
suggest that reliance on the P-value and 
significance testing “retards the research 

enterprise by making it difficult to develop 
cumulative knowledge.” (19).   
 
It is not uncommon to find that when a 
finding does not reach a statistically 
significant level of 0.05, inadequate sample 
size or low power (e.g., high β) is often 
blamed for the failure. However, while it is 
quite plausible that the smaller a sample 
size is, the less reliable its conclusion is, this 
argument overlooks the fact that small 
sample size studies with large effect sizes 
can yield the same P-value as large studies 
with very small effect sizes. Consider the 
following hypothetical studies (Table 1), 
each involving two patient groups of equal 
sample size, but with different magnitudes of 
effect as measured by an odds ratio (OR). 

 
   Table 1. The relationship between effect size, sample size, and P-value through 7 hypothetical studies  

Study  Sample size 
per group 

Incidence 
group 1 

Incidence group 2 OR (95% CI) P-value 

1 100 2 (2%) 10 (10%) 5.44 (1.16 – 25.52) 0.03 
2 500 10 (2%) 22 (4.4%) 2.26 (1.06 – 4.81) 0.03 
3 1,000 20 (2%) 36 (3.6%) 1.83 (1.05 – 3.18) 0.03 
4 5,000 100 (2%) 132 (2.6%) 1.33 (1.02 – 1.73) 0.03 
5 10,000 200 (2%) 245 (2. 5%) 1.23 (1.02 – 1.49) 0.03 
6 100,000 2000 (2%) 2138 (2.1%)  1.07 (1.00 – 1.14) 0.03 
7 1,000,000 20000 (2%) 20430 (2.04%) 1.02 (1.00 – 1.04) 0.03 

 
All studies yielded a P-value of 
approximately 0.03. Study 1 shows a 
substantial effect, but the sample size is 
rather modest to warrant a definite 
conclusion. Yet, as the sample size is 
increased and the effect size is decreased, 
the P-value remains unchanged. Indeed, 
study 7 seems to demonstrate conclusively 
no real effect (the incidence rates of the two 
groups are virtually equal), but the P-value is 
0.03! This simple demonstration shows that 
any small difference, no matter how clinically 
unimportant, will be statistically significant (P 
< 0.05) when the sample size is large 
enough. On the other hand, any large 
difference, no matter how clinically 
important, will be statistically insignificant (P 
> 0.05) when the sample size is small. Thus, 
a low P value in a small study provides 
stronger evidence than the same P value in 
a larger study. In short, the P-value is not a 
rational measure of the weight of evidence 
for the treatment effect.  
 
The question is not whether there is no  
effect, but rather how large the effect size is.  

Unfortunately, the P-value as computed 
from the above procedure does not provide 
any information on effect size. Recognizing 
the fallacy of the P-value and the limitation 
of hypothesis testing, confidence intervals 
have been introduced (20). In clinical 
research, the 95% CI is increasingly 
becoming a measure of effect size. CIs are 
useful because they provide the lower and 
upper limits of effect size consistent with a 
study’s data. However, the meaning of CIs is 
also rather awkward and not easy to 
understand. Clinicians often understand that 
a 95% CI means that there is a 95% 
probability that the effect size lies within the 
interval. However, such an understanding is 
incorrect. The meaning of the CI is based on 
the following logic: if a study is repeated an 
infinite number of times, then 95% of all 
calculated "95% CIs" would be expected to 
contain the true, but unknown value of the 
parameter – assuming the null hypothesis is 
correct. This is often referred to as the 
“frequentist CI” because it is based on long-
term frequency. Thus, the CI approach is 
based on a fictitious assumption that the 
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study will be repeated an infinite number of 
times, when in reality, the study has been 
done only once. The CI has often been used 
as a de facto significance test when 
researchers examine whether the 
confidence limit overlaps the null value (3).  
For example, a 2006 study stated that 
supplementation with vitamin C and E during 
pregnancy does not reduce the risk of death 
or other serious outcomes in infants (21).  
This conclusion appeared to be based on 
the RR of 0.79 and a 95% CI: 0.61-1.02. A 
CI thus provides no more information about 
the likelihood of chance as an explanation 
for the finding than does a P-value. In a 
clinical research setting, what we want to 
know is: given the data that we have from 
prior and current studies, what is the chance 
that there is a treatment effect? Only a 
Bayesian approach can provide answers to 
this question. 
 
Bayesian Inference  
 
In recent years, an alternative model of 
scientific inference has been proposed and 
increasingly applied in medical research (22-
25). This “new” model of inference is based 
on the idea put forth by Thomas Bayes 
(1702-1761) in the 18th century (26). The 
Bayesian approach offers what researchers 
want to know: the likelihood of a hypothesis 
given some data that have been observed. It 
allows researchers to combine new data 
with their existing data or knowledge to 
arrive at more refined data and knowledge.   
 
At the simplest level, the inference of 
treatment effect from an RCT can be likened 
to the reasoning that is used in clinical 
diagnosis (27). In clinical diagnosis one is 
interested to know whether a patient has a 
disease if his or her test result is positive. 
This probability – also referred to as the 
positive predictive value (PPV) – is a 
function of the disease's prevalence in the 
population, as well as the test’s sensitivity 
and specificity. This is basically a Bayesian 
approach to diagnosis. In fact, all clinicians 
are Bayesians.  
 
Similar to the diagnostic scenario, in an RCT 
one is interested to know whether there is a 
treatment effect given “positive” data (not 
the probability of getting the data given no 

effect as conveyed by the P-value).  
According to the Bayesian theorem (26), the 
probability of treatment effect given the data 
can be formally expressed as a function of 
the probability of effect prior to conducting 
the study, and the probability of obtaining 
the data if there is an effect. Expressed 
formally, the theorem states that the 
probability of hypothesis H conditioned on 
data D – denoted by P(H | D) – is 
proportional to the probability of H before the 
study – P(H) – and the probability of data D 
given the hypothesis H – P(D | H). In other 
words: P(H | D) ∝ P(H) × P(D | H). This 
formulation is equivalent to saying that “what 
we knew beforehand + what we learn from 
the present data = what we know 
afterwards.” It is analogous to the clinical 
setting, where prior to making a diagnosis, 
the clinician usually knows the background 
risk of the disease in the general population 
(such as lifetime risk) and clinical history 
(prior information), and when the test 
provides a result (actual data), the clinician 
can update his or her initial estimate of risk 
of disease for the patient (posterior 
information).  
 
Thus, there are three basic elements in a 
Bayesian inference: prior data, likelihood of 
present data, and posterior distribution. Prior 
information describes clinical opinion, a 
priori or previously observed results from 
other studies. Prior information is expressed 
in terms of a probability distribution related 
to the effect size. This can be based on 
information available in the literature, 
existing knowledge, and clinical databases, 
and even experts’ opinions. For example, 
the RR reduction and its 95% CI of past 
clinical trials can be considered “prior 
information” in a Bayesian inference. The 
likelihood captures how the present data 
modify prior knowledge of the therapeutic 
effect. The posterior distribution synthesizes 
both prior knowledge and likelihood function 
to provide the ultimate answer to the 
question: what is the likelihood that the 
treatment has an effect given the observed 
data? The Bayesian approach is therefore a 
process of cumulating research findings, 
which is also an essential feature of the 
scientific enterprise. 
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Vitamin D Supplementation and Fracture: 
a Bayesian Interpretation  
 
As an example of the Bayesian approach, 
consider the association between vitamin D 
and fracture risk. Bischoff-Ferrari and 
colleagues (28) have undertaken a meta-
analysis of the available data on the anti-
fracture efficacy of vitamin D 
supplementation, and concluded that vitamin 
D supplementation in ambulatory individuals 
at doses between 700 and 800 IU/d may 
reduce hip fracture by 26% (pooled RR =   
0.74; 95% CI: 0.61-0.88) and non-hip 
fracture risk by 23% (RR = 0.77; 95% CI: 
0.68-0.97) (28). However, results from the 
RECORD study, published almost at the 
same time (29), suggested that routine oral 
supplementation with vitamin D with or 
without calcium did not significantly reduce 
fracture risk in elderly men and women 
either at the hip (RR = 1.14; 95% CI: 0.75-
1.71) or non-vertebrae (RR = 1.07; 95% CI: 
0.90-1.29). The question of interest is: given 
the results of meta-analysis and the latest 
data, what is the probability that vitamin D 
supplementation could reduce hip or non-
vertebral fracture risk? 
 
In the presence of conflicting findings, the 
Bayesian approach offers an attractive 
method for synthesizing various data into a 
coherent summary and a more reliable 
conclusion regarding treatment effect. The 
distribution of RR from the meta-analysis 
can be considered as prior information (Fig. 
1 and Fig. 2, top panel). The current 
(RECORD) data are represented by the 
middle panel of Fig. 1 and Fig. 2. The shape 
of the distribution shows that the prior 
information has much more information than 
the RECORD data. The posterior distribution 
(bottom panel of Fig. 1 and Fig. 2) provides 
the expected RR given the prior information 
and current likelihood of the RECORD data. 
The posterior data indicate that the RR of 
hip fracture was 0.79 (95% CreI: 0.67 – 
0.94), and of non-hip fracture was 0.91 (95% 
CreI 0.80 – 1.03). 
 
It should be noted that an interval estimate 
in Bayesian methods is referred to as the 
“credible interval” (CreI) (30). The meaning 
of the CreI is much different than the 
meaning of the CI. A 95% Bayesian CreI 

means that there is 0.95 probability that the 
effect size value being estimated will fall 
between the lower and upper bounds of the 
set. Thus, in the above example, there is a 
95% chance that vitamin D supplementation 
reduces hip fracture by between 6% and 
33%. This interpretation is conditional on 
prior information and the confidence one has 
in that prior information.   
 
A major advantage of Bayesian analysis is 
that it can estimate any magnitude of 
efficacy by computing the area under the 
curve between any two points on the 
distribution. For example, if “clinical efficacy” 
is defined as a RR reduction of at least 25%, 
then the probability of clinical efficacy can be 
estimated by computing the area under the 
curve where RR ≤ 0.75. Accordingly, the 
probability that 700-800 IU/d of vitamin D 
supplementation reduced hip fracture and 
non-vertebral fracture risk by at least 25% 
was only 0.25 and 0.002, respectively. Thus, 
in the ambulatory elderly, given these latest 
data, it seems that the evidence for the 
effect of vitamin D supplementation on 
fracture risk is still inconclusive. If there is an 
effect, the effect size is likely to be modest. 
 
In Bayesian inference, there is no dichotomy 
of “significance” versus “non-significance.” 
The P-value has no interpretational meaning 
in Bayesian inference; instead, the result is 
expressed in terms of the posterior 
probability of treatment effect given the 
observed data. For example, we can make a 
direct statement concerning the effect as 
follows: “There was a 90% probability that 
the intervention reduced fracture risk by at 
least 10%” (31). By moving away from a 
dichotomous decision, the Bayesian 
approach avoids drawing conclusions from a 
single study. 

 
Bayesian Interpretation of Anti-Fracture 
Efficacy  
 
During the past two decades, several RCTs 
of anti-fracture efficacy have been 
conducted (32-42). All of these RCTs were 
designed with some initial guesses of effect 
sizes; however, therapeutic efficacy has 
been interpreted in terms of the P-value and 
CI rather than in terms of the initial 
hypothetical effect size. For example, the 
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Fig. 1. Prior distribution (top panel), likelihood of RECORD data (middle), and the resulting posterior 
distribution (bottom) of relative risk (RR) associated with vitamin D supplementation's effect on hip fracture. 
The highlighted area under the posterior distribution curve represents the probability that vitamin D reduced 
fracture by at least 25%. This probability was estimated at 0.25 for hip fracture. 
 
FIT-1 trial (32) was designed to detect a 
40% RR reduction of vertebral fractures, and 
the actual RR reduction was 47% (95% CI: 
32% to 59%), but the investigators do not 
formally comment on whether the data are 
consistent with the initial hypothesis. 
Similarly, the TROPOS study (36) was 
designed to detect a 25% RR reduction of 
non-vertebral fracture, but this anticipated 
effect size was not formally corroborated 
with the actual RR of 0.89 (95% CI: 0.67–
1.19). The Bayesian approach can be 
helpful in assessing the consistency 

between observed data and the anticipated 
effect size.  
 
As mentioned above, in order to estimate 
the probability of effect given the observed 
data, it is necessary to specify the prior 
information of the effect size. In the context 
of anti-fracture clinical trials, the primary 
measure of effect size is the RR. It is well-
known that logarithmic RR follows a normal 
distribution characterized by its mean and 
variance. Previous RCTs (32-42) suggest 
that there is substantial uncertainty about 
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Fig. 2. Prior distribution (top panel), likelihood of RECORD data (middle), and the resulting posterior 
distribution (bottom) of relative risk (RR) associated with vitamin D supplementation's effect on non-hip 
fracture. The highlighted area under the posterior distribution curve represents the probability that vitamin D 
reduced fracture by at least 25%. This probability was estimated at 0.002 for non-hip fracture. 
 
the RR reduction among study populations. 
This uncertainty can be quantified by three 
types of prior distributions: vague, skeptical, 
and enthusiastic priors. In the vague prior, it 
is assumed that the mean log RR is 0 (or a 
RR of 1) with a large variance (10,000). The 
vague prior implies a state of ignorance, in 
the sense that the effect could be negative 
as well as positive with equal probability. In 
the skeptical prior, based on previous meta-

analysis, it is hypothesized that there is little 
chance (i.e., 5%) that a treatment can 
reduce fracture risk by more than 60% (RR 
≤ 0.4) or increase the risk by more than 2.4-
fold. In the “positive” (enthusiastic) scenario, 
it is assumed that on average a treatment 
could reduce fracture risk by 20% (i.e., RR = 
0.8) with the same variance of skeptical 
prior. The distribution of the three scenarios 
is shown in Fig. 3. 
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Fig. 3. Distribution of prior data. The x-axis represents log relative risk (RR) and the y-axis is the probability.  
 
With the three priors and the actual RRs 
obtained from major clinical trials of anti-
resorptive and anabolic therapies, the 
posterior probabilities of RR reduction of 
vertebral fracture and non-vertebral fracture 
were estimated (Table 2 and Table 3). If a 
RR reduction of 25% or more is thought to 
demonstrate “clinical efficacy” (e.g., clinically 
worthwhile), then these results suggest that 
there is a high probability of clinical efficacy 
(>0.95) for alendronate, risedronate, 
zoledronic acid, teriparatide, strontium 
ranelate, and raloxifene. However, for hip 
fracture, apart from zoledronic acid, none of 
these drugs have clear clinical efficacy. 
Indeed, none of the probabilities of efficacy 
reached 0.90 (Table 3). A remarkable 
feature of these results is that the magnitude 
of posterior probability is not substantially 
dependent on the choice of particular prior. 
 

In Bayesian analysis, it is possible to 
estimate the probability of efficacy for any 
threshold. Table 4 presents the posterior 
probability of RR reduction of >10%, >20%, 
>30%, >40% and >50% for vertebral and hip 
fractures. As expected, the posterior 
probability of efficacy drops as the threshold 
of efficacy rises. The observed RCT data 
are quite consistent with a RR reduction of 
10% or more. The data are also consistent 
with the hypothesis that alendronate, 
risedronate, raloxifene, teriparatide and 
strontium ranelate (but not calcitonin) reduce 
vertebral fracture risk by 30% or more. On 
the other hand, for hip fracture, the data are 
largely consistent with a RR reduction of 
10% or less for alendronate, risedronate and 
strontium ranelate. The data provide weak 
evidence that these drugs reduce hip 
fracture risk by more than 30%. However, 
the probability that zoledronic acid reduces 
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  Table 2. Posterior probability of anti-vertebral fracture efficacy 
Posterior probability of relative risk reduction of 

vertebral fracture by at least 25% 
Study Relative risk 

reduction and 
95% CI Vague prior1 Skeptical prior2 Enthusiastic 

prior3 
Alendronate (5/10 mg), 
FIT-1 study (32) 47 (32-59)  0.996 0.992 0.995 

Alendronate (5/10 mg), 
FIT-2 study (33) 44 (20-61) 0.944 0.893 0.923 

Risedronate (5 mg), 
VERT-US study (34) 49 (27-64) 0.984 0.961 0.974 

Risedronate (5 mg), 
VERT-MN study (35) 41 (18-57) 0.927 0.876 0.908 

Zoledronic acid (5 mg), 
HORIZON (42) 70 (62-76) 1.000 1.000 1.000 

Raloxifene (60 mg), 
MORE-1 study (37) 50 (20-60) 0.989 0.972 0.982 

Raloxifene (60 mg), 
MORE-2 study (37) 30 (10-40) 0.748 0.695 0.732 

Calcitonin (200 IU), 
PROOF study (38) 33 (3-53) 0.729 0.629 0.695 

Teriparatide (20 mg) 
(39) 65 (45-78) 0.999 0.996 0.998 

Strontium ranelate (40) 41 (27-52) 0.987 0.979 0.984 
Notes: 1In the vague prior, it is assumed that the log relative risk (RR) is normally distributed with mean 0 
(on average, there is no effect) and variance of 10,000. 2In the skeptical prior, based on previous meta-
analysis, it is hypothesized that there is a 95% chance that the RR varies from 0.4 to 2.4, with the average 
being 1 (no effect). This is equivalent to the statement Pr(log RR ≤ -0.916) = 0.025, and by symmetry, Pr(log 
RR ≥ 0.875) = 0.025. With this skeptical assumption and by normal distribution, it can be shown that the 
prior variance is 0.209. Therefore the skeptical prior distribution can be specified with mean 0 and variance 
of 0.209. 3In the “positive” (enthusiastic) scenario, it is assumed that on average a treatment could reduce 
fracture risk by 20% (i.e., RR = 0.8), with the same variance of skeptical prior. Under this enthusiastic 
assumption, it can be shown that the prior distribution is characterized by a mean of -0.223 and variance of 
0.209. 
 
hip fracture by 30% or more is almost 1, 
which is highest among the drugs.  
 
It is commonly stated that current 
antiresorptive and anabolic agents reduce 
fracture risk by 50%. However, Fig. 4 shows 
that the probability of this effect size is 
modest. Only teriparatide and zoledronic 
acid have a posterior probability (of RR 
reduction of 50%) higher than 0.9; none of 
the remaining drugs could achieve this 
probability. For hip fracture, the probability 
that any of the drugs results in hip fracture 
risk reduction of >50% is consistently less 
than 0.7.   
 
In summary, results from the Bayesian 
analysis suggest that currently available 
pharmacologic therapies could reduce 
vertebral fracture risk by 30% or less, and 
that some drugs could reduce hip fracture 
risk by at most 10%. Current RCT data are 
not consistent with the hypothesis that most 

drugs, except zoledronic acid and 
teriparatide, reduce vertebral fracture risk by 
50% or more. Of course, this analysis does 
not in any way invalidate the conclusions of 
these original trials, but rather provides an 
alternative and complementary interpretation 
of probable effect sizes.  
 
Toward a Bayesian interpretation of 
RCTs 
 
The call for evidence-based practice has 
driven the growing use of RCTs as a 
scientific means to establish evidence. Since 
its formal introduction in 1951 by Bradford 
Hill (43), the RCT is now considered the 
apotheosis of scientific advances in clinical 
medicine. In osteoporosis research, the RCT 
has been used as a tool to identify effective 
therapeutic and preventive treatments that 
are currently used in clinical practice. 
Increasingly, RCTs are designed with large 
to very large sample sizes to detect ever
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Table 3. Posterior probability of anti-hip fracture efficacy  
Posterior probability of relative risk reduction of hip 

fracture by at least 25% 
Study Relative risk 

reduction and 
95% CI Vague prior Skeptical prior Enthusiastic prior 

Alendronate, FIT-1 
study (32) 51 (1-77)  0.873 0.687 0.787 

Alendronate (5/10 mg), 
FIT-2 study, T-scores < 
-2.5 (33) 

56 (3-82) 0.893 0.681 0.790 

Alendronate (5/10 mg), 
FIT-2 study, T-scores < 
-1.6 (33)  

21 (+44 to -57) 0.433 0.311 0.413 

Risedronate (2.5 and 5 
mg), HIP study, 70-80 
years with osteoporosis 
(41) 

40 (10-60) 0.860 0.765 0.822 

Risedronate (2.5 and 5 
mg), HIP study, >80 
years (41) 

20 (+20 to -40) 0.357 0.285 0.348 

Zoledronic acid (5 mg), 
HORIZON (42) 41 (17-58) 0.916 0.857 0.892 

Calcitonin, PROOF 
study (38) 50 (+60 to -80 0.778 0.509 0.652 

Raloxifene (60/120 mg), 
MORE study (37) +10 (+90 to -40) 0.096 0.076 0.123 

Strontium ranelate, ITT 
analysis (36) 11 (+19 to -34) 0.127 0.101 0.130 

Strontium ranelate, high 
risk group (36) 43 (3-67) 0.841 0.703 0.783 

Notes: See notes from Table 2.  
 
smaller effect sizes. In this setting, it is 
important to explicitly quantify the 
hypothesis and effect size being tested in 
these trials. The Bayesian approach 
presented here offers an attractive method 
for such a quantification. 
 
Clinical trial data represent an important 
source of medical knowledge, and 
knowledge should be accumulated or 
updated when new data become available. 
Regrettably, the issue of how to formally 
update knowledge has received little 
attention from clinical researchers, as results 
of an RCT are often considered in isolation 
from previous results. The Bayesian method 
allows for the synthesis of existing 
knowledge, including expert opinions, with 
previous data into a more coherent and 
more reliable conclusion. As a result, 
Bayesian inference is much less likely to be 
prone to “significant” results and provides 
protection against false positive findings that 
are highly prevalent in the medical literature, 
especially in studies with low plausibility (4).   
 

A reader of an RCT is confronted with three 
questions: what should one do, what does 
one believe, and how should one interpret 
the result as evidence (44)? In the face of 
uncertainty, the Bayesian approach can help 
to address the second and third questions. It 
is particularly useful in studies where a 
statistically significant result is too small to 
be clinically relevant, or a statistically non-
significant result is large enough to be 
clinically important. For example, in the 
study of the supplementation of vitamin C 
and E during pregnancy, although the 
traditional analysis did not reveal a 
statistically significant risk reduction (RR = 
0.79; 95% CI: 0.61 – 1.02) (21), the data are  
also consistent with a probability of 0.96 that 
vitamin C and E reduced the risk of death or 
other serious outcomes in infants. Perhaps 
the most helpful inference the Bayesian 
model can offer is its estimates of direct 
probability statements about any differences 
that are of clinical interest (45;46). 
Therefore, the Bayesian approach does not 
create a positive result from a “negative” 
trial, because if an intervention has no 

 



IBMS BoneKEy. 2009 August;6(8):279-294 
http://www.bonekey-ibms.org/cgi/content/full/ibmske;6/8/279 
doi: 10.1138/20090391 
 

  289 
         
     Copyright 2009 International Bone & Mineral Society 

Table 4. Posterior probability of relative risk (RR) reduction for vertebral and hip fractures 
Posterior probability of relative risk reduction by Study 

More 
than 
10%   

More 
than 20% 

More 
than 30% 

More 
than 40% 

More than 
50% 

Vertebral fracture 

Relative risk 
reduction and 

95% CI 
     

Alendronate (5/10 mg), 
FIT-1 study (32) 47 (32-59)  0.999 0.999 0.984 0.831 0.325 

Alendronate (5/10 mg), 
FIT-2 study (33) 44 (20-61) 0.995 0.974 0.888 0.647 0.268 

Risedronate (5 mg), 
VERT-US study (34) 49 (27-64) 0.999 0.994 0.960 0.816 0.456 

Risedronate (5 mg), 
VERT-MN study (35) 41 (18-57) 0.994 0.968 0.850 0.541 0.157 

Zoledronic acid (5 mg), 
HORIZON (42) 70 (62-76) 1.000 1.000 1.000 1.000 0.999 

Raloxifene (60 mg), 
MORE-1 study (37) 50 (20-60) 1.000 0.999 0.999 0.993 0.500 

Raloxifene (60 mg), 
MORE-2 study (37) 30 (10-40) 0.992 0.902 0.500 0.068 0.000 

Calcitonin (200 IU), 
PROOF study (38) 33 (3-53) 0.944 0.831 0.594 0.275 0.057 

Teriparatide (20 mg) 
(39) 65 (45-78) 0.999 0.999 0.998 0.989 0.936 

Strontium ranelate (40) 41 (27-52) 0.999 0.998 0.945 0.562 0.061 
Hip fracture       
Alendronate, FIT-1 
study (32) 51 (1-77)  0.948 0.905 0.830 0.707 0.521 

Alendronate (5/10 mg), 
FIT-2 study, T-scores 
< -2.5 (33) 

56 (3-82) 0.952 0.918 0.860 0.765 0.617 

Alendronate (5/10 mg), 
FIT-2 study, T-scores 
< -1.6 (33)  

21 (+44 to -57) 0.664 0.516 0.347 0.186 0.068 

Risedronate (2.5 and 5 
mg), HIP study, 70-80 
years with 
osteoporosis (41) 

40 (10-60) 0.975 0.918 0.772 0.500 0.189 

Risedronate (2.5 and 5 
mg), HIP study, >80 
years (41) 

20 (+20 to -40) 0.747 0.500 0.225 0.052 0.004 

Zoledronic acid (5 mg), 
HORIZON (42) 41 (17-58) 0.992 0.960 0.837 0.538 0.170 

Calcitonin, PROOF 
study (38) 50 (+60 to -80) 0.866 0.812 0.737 0.634 0.500 

Raloxifene (60/120 
mg), MORE study (37) 

+10 (+90 to -
40) 0.247 0.139 0.062 0.019 0.004 

Strontium ranelate, ITT 
analysis (36) 11 (+19 to -34) 0.530 0.239 0.056 0.004 0.000 

Strontium ranelate, 
high risk group (36) 43 (3-67) 0.952 0.891 0.772 0.573 0.317 

 
effect, then the posterior probability of effect 
will be less than 0.5.  
 
However, a major criticism of the Bayesian 
approach is the use of what may be 
considered subjective prior information, 
which can vary from one study to another. 

While subjective prior information can be 
problematic, the explicit specification of such 
information in the analysis creates an 
environment for better communication of 
results. The Bayesian approach requires a 
much more extensive computation that was 
an obstacle to its application in practice. 
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Fig. 4. Posterior probability that a drug reduced the risk of (A) vertebral fracture and (B) hip fracture by at 
least 50% (based on “vague” prior information). SR: Strontium ranelate; CT: Calcitonin; ZOLE: Zoledronic 
acid; RLX: Raloxifene; RIS: Risedronate; ALN: Alendronate.  
 
However, with the advent of user-friendly 
software (47) and powerful personal 
computers, this computational complexity is 
no longer an issue.   
 
Despite attempts over the past ten years to 
introduce Bayesian inference into the field of 
osteoporosis (48-53), the approach is still 
under-utilized. The recent revived interest in 
the Bayesian approach has been prominent 
in medical research and risk assessment, 
and it is expected that the 21st century 
research method will be a synthesis of 
frequentist and Bayesian methods. 
Currently, several medical journals have 
encouraged the application of Bayesian 
approaches in the analysis and reporting of 
clinical trials (54-56). In this environment, 
osteoporosis research could benefit from 
alternative methods offered in the Bayesian 
approach, and could adopt them with an 
amount of vigor similar to that which has 
characterized other research settings.  
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