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Abstract 
 
     There may be no single mechanoreceptor in osteocytes, but instead a combination of events that has to 
be triggered for mechanosensation and transduction of signal to occur. Possibilities include shear stress 
along dendritic processes and/or the cell body, cell deformation in response to strain, and primary cilia. 
These events could occur independently or simultaneously to activate mechanotransduction. Signal initiators 
include calcium channel activation and ATP, nitric oxide, and prostaglandin release. Means of signal transfer 
include gap junctions and hemichannels, and the release of signaling molecules into the bone fluid.  
Questions remain regarding the magnitude of strain necessary to induce an osteocyte response, how the 
response propagates within the osteocyte network, and the timing involved in the initiation of bone resorption 
and/or formation on the bone surface. Mechanical loading in the form of shear stress is clearly involved not 
only in mechanosensation and transduction, but also in osteocyte viability. It remains to be determined if 
mechanical loading can also affect mineral homeostasis and mineralization, which are newly recognized 
functions of osteocytes. BoneKEy-Osteovision. 2006 October;3(10):7-15. 
©2006 International Bone and Mineral Society 
 
  
 
Osteocytes, composing over 90-95% of all 
bone cells in the adult animal (1), are 
defined as cells embedded in the 
mineralized bone matrix, yet clear functions 
have not been ascribed to these cells, in 
contrast to osteoblasts and osteoclasts. 
Osteocytes are regularly dispersed 
throughout the mineralized matrix within 
‘caves’ called lacunae, connected to each 
other and cells on the bone surface through 
slender, cytoplasmic processes or dendrites 
passing through the bone in thin ‘tunnels’ 
(100-300 nm) called canaliculi. Not only do 
these cells communicate with each other 
and with cells on the bone surface, but their 
dendritic processes are also in contact with 
the bone marrow (2), implying that 
osteocytes can communicate with marrow 
resident cells. One means for 
communication with other cell types is 
through gap junctions, and another is 
through release of signaling molecules into 
the bone fluid that flows through the lacuno-
canalicular system. The most popular theory 
regarding the major function of osteocytes is 
that they translate mechanical strain into 
biochemical signals between osteocytes and 

to cells on the bone surface to affect 
(re)modeling (3), yet this remains to be 
definitively proven. Recent data suggest 
additional important functions for osteocytes, 
such as the regulation of mineral 
metabolism (4) and the alteration of the 
properties of their surrounding matrix (5). 
  
Osteocytes as Mechanosensors Directing 
Bone Formation and/or Resorption  
 
A known key regulator of osteoblast and 
osteoclast activity in bone is mechanical 
strain. The skeleton is able to continually 
adapt to mechanical loading by adding new 
bone to withstand increased amounts of 
loading, and by removing bone in response 
to unloading or disuse (reviewed in (6;7)). 
Galileo, in 1638, is documented as first 
suggesting that the shape of bones is related 
to loading. Julius Wolff, in 1892, more 
eloquently proposed that bone 
accommodates or responds to strain. The 
cells of bone with the potential for sensing 
mechanical strain and translating these 
forces into biochemical signals include bone 
lining cells, osteoblasts, and osteocytes. Of 
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these, the osteocytes, with their sheer 
numbers and distribution throughout the 
bone matrix and their high degree of 
interconnectivity, are thought to be the major 
cell type responsible for sensing mechanical 
strain and translating that strain according to 
the intensity of the strain signals (3).  
 
Various studies have demonstrated load-
related responses in osteocytes in vivo, 
supporting their proposed role as 
mechanotransducers in bone. Within a few 
minutes of loading, glucose 6-phosphate 
dehydrogenase, a marker of cell metabolism, 
is increased in osteocytes and lining cells 
(8). By 2 hours, c-fos mRNA is evident in 
osteocytes and by four hours, transforming 
growth factor-β and insulin-like growth factor-
1 mRNAs are increased (9). Additional 
osteocyte selective markers, such as 
E11/gp38, dentin matrix protein 1 (DMP1), 
MEPE, and sclerostin, are also regulated by 
mechanical loading. The dentin matrix 
protein 1 gene, DMP1, is activated in a few 
hours in response to mechanical loading in 
osteocytes in the tooth movement model 
(10) and in the mouse ulna loading model of 
bone formation (11). E11/gp38, a membrane 
protein that is osteocyte-selective and 
thought to play a role in dendrite elongation, 
is also activated within 4 hours after 
mechanical load, not only in cells near the 
bone surface, but also in deeply embedded 
osteocytes (12). As detailed below, the 
osteocyte specific marker sclerostin, the 
protein product of the SOST gene, is 
decreased in response to anabolic loading 
(13). 
 
Anabolic signals that are released within 
seconds after loading in osteocytes include 
nitric oxide (NO), prostaglandins, and other 
small molecules such as ATP. NO, a short-
lived free radical that inhibits resorption and 
promotes bone formation, is generated 
within seconds in both osteoblasts and 
osteocytes in response to mechanical strain 
(14). Primary osteocytes and primary 
calvarial bone cells have also been shown to 
release prostaglandins in response to fluid 
flow treatment, and a number of studies 
have suggested that osteocytes are the 
primary source of these load-induced 
prostaglandins (15). In vivo studies have 
shown that new bone formation induced by 

loading can be blocked by the prostaglandin 
inhibitor, indomethacin (16), and agonists of 
the prostaglandin receptors have been 
shown to increase new bone formation (17).  
 
Another anabolic pathway that appears to be 
activated rapidly in osteocytes within one 
hour in response to load is the canonical 
Wnt/β-catenin pathway. Johnson and 
colleagues, discoverers of the high bone 
mass (HBM) gene, a mutated low-density 
lipoprotein receptor-related protein 5 gene 
(LRP5) encoding the LRP5 receptor, 
hypothesized as early as 2002 that LRP5 is 
a major player in the way that bone cells 
respond to mechanical load (18). They 
reasoned that the HBM mutation results in a 
skeleton that is overadapted in relation to the 
actual loads being applied, but yet is in 
homeostatic equilibrium. They found that 
wild-type bone experienced 40% greater 
strain than HBM bone with the same load 
(19). Based on these observations in 
humans and mice, they hypothesized that 
the set-point for load responsiveness was 
lower in the HBM skeleton. Loss of function 
mutations in LRP5 result in low bone mass, 
and mice with mutations in LRP5 do not 
respond to mechanical load (20), again 
supporting the notion that LRP5 is involved 
in mechanotransduction. At the most recent 
annual meeting of the ASBMR, Robling et al. 
showed that sclerostin, an inhibitor of the 
Wnt pathway that binds to LRP5 and that is 
produced exclusively by mature osteocytes, 
decreases 24 hours after loading (13). These 
investigators proposed that Wnt/β-catenin is 
the initiator and SOST/sclerostin is the 
inhibitor of load-induced new bone formation. 
Also at this meeting, Kamel et al. showed 
that prostaglandin released by bone cells in 
response to fluid flow can activate the Wnt/β-
catenin pathway independent of LRP5 (21). 
These investigators suggested that 
prostaglandin can bypass the inhibitory 
effects of sclerostin present in the bone 
matrix.  
  
Osteocytes may also send signals for bone 
resorption. Isolated avian osteocytes have 
been shown to support osteoclast formation 
and activation (22), as has the osteocyte-like 
cell line, MLO-Y4. However, unlike any 
previously reported stromal cell lines, MLO-
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Y4 cells did so in the absence of any 
osteotropic factors (23). These cells express 
RANKL along their dendritic processes and 
secrete large amounts of macrophage 
colony-stimulating factor, both essential for 
osteoclast formation. Expression of RANKL 
along osteocyte dendritic processes, and the 
capacity of osteocyte dendritic processes to 
extend into the marrow space (2), provide a 
potential means for osteocytes within bone 
to interact and stimulate osteoclast 
precursors at the bone surface. Another 
means by which osteocytes can support 
osteoclast activation and formation is 
through apoptosis. Osteocyte apoptosis 
occurs at sites of microdamage, where the 
dying osteocyte may send signals to 
osteoclasts for targeted removal of bone 
(24). Investigators found that Bax (apoptotic 
biomarker) was elevated in osteocytes 
immediately at the microcrack locus, 
whereas Bcl-2 (anti-apoptotic biomarker) 
was expressed 1-2 mm from the microcrack, 
suggesting that damaged osteocytes send 
signals of resorption, whereas those 
osteocytes that do not undergo apoptosis 
are prevented from doing so by active 
protective mechanisms. It is still unclear if 
signals of resorption sent by dying 
osteocytes are the same as or different from 
those sent by viable osteocytes.  
 
The parameters for inducing bone formation 
or bone resorption in vivo are fairly well- 
known and well-characterized. Bone mass is 
influenced by peak applied strain (25), and 
bone formation rate is related to loading rate 
(26). At bending frequencies of 0.5 to 2.0 Hz, 
bone formation rates increase as much as 
four-fold, while no increase is observed at 
frequencies lower than 0.5 Hz. When rest 
periods are inserted, the loaded bone shows 
increased bone formation rates when 
compared to bone subjected to a single bout 
of mechanical loading (27). Improved bone 
structure and strength is greatest if loading is 
applied in shorter versus longer increments 
(28). Therefore, for optimal anabolic loading, 
frequency, intensity, and timing of loading 
are all important parameters. The major 
challenge has been to translate these known 
in vivo parameters of mechanical loading to 
in vitro cell culture models. 
 
 

Mechanisms Whereby Osteocytes Sense 
Mechanical Loading   
 
Even though osteocytes are thought to be 
mechanosensors, there is little conclusive 
data to show how mechanical loading is 
sensed by these cells. One of the more 
accepted forms of strain is the flow of bone 
interstitial fluid driven by extravascular 
pressure in combination with applied 
mechanical loading (29;30). Recently, the 
first real-time attempts to measure solute 
transport in bone through dye diffusion within 
the lacunar-canalicular system were 
conducted ex vivo (31). Fluid flow imposes a 
shear stress on osteocytes that appears to 
deform the cells within their lacunae and the 
dendrites within their canaliculi (30). 
Theoretical modeling predicts osteocyte wall 
shear stresses resulting from peak 
physiologic loads in-vivo in the range of 8 to 
30 dynes/cm2. However, it is not clear if the 
dendritic processes, the osteocyte cell body, 
and/or cilia are the mechanosensors (see 
Figure 1). 
 
A model of strain amplification in osteocyte 
cell processes has been proposed by 
Weinbaum and coworkers (32). One of the 
requirements of the model is that osteocyte 
dendritic processes be tethered to the 
canalicular wall and anchored to hexagonal 
actin bundles within the cell processes. The 
model predicts that fluid flow through this 
canalicular space will deform the shape of 
these tethering elements, creating a drag 
force that then imposes a hoop strain on the 
central actin bundles inside the osteocyte 
cell process. This model, however, does not 
take into account that the dendritic 
processes of osteocytes may not always be 
firmly anchored to their canaliculi. The 
osteocyte has been viewed as a quiescent 
cell until recently, when Dallas and 
coworkers showed cell body movement and 
the extension and retraction of dendritic 
processes (33). Calvarial explants from 
transgenic mice with green fluorescent 
protein (GFP) expression targeted to 
osteocytes were used to dynamically image 
living osteocytes within their lacunae.  
Surprisingly, these studies revealed that, far 
from being a static cell, the osteocyte may 
be highly dynamic. These data suggest that 
dendrites, rather than being permanent 
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connections between osteocytes and with 
bone surface cells, may have the capacity to 
connect and disconnect. These studies also 
partially explain why a protein thought to play 
a role in dendrite elongation, E11/gp38, 
would be regulated by mechanical load in 
cells embedded in mineralized matrix (12). 
 
Fluid flow shear stress may induce 
mechanosensation in osteocytes through 
perturbation of integrins (34). Integrins, 
comprised of heterodimers of α and β 

subunits, are major receptors/transducers 
that connect the cytoskeleton to the 
extracellular matrix (35) and interact with 
plasma membrane proteins such as 
metalloproteases, receptors, transporters, 
and channels mainly through the 
extracellular domain of their α subunits (36). 
The integrin α5 subunit may act as a 
tethering protein that, when perturbed by 
shear stress, opens hemichannels in 
osteocytes, allowing the release of 
prostaglandin (37).   

 
 

 
Figure 1: Cartoon showing potential ways that an osteocyte may sense fluid flow shear stress.  
(A). Fluid flow shear stress could perturb tethering elements between the canalicular wall and the 
cell membrane. (B). Fluid flow shear stress may also affect the cell body, causing cell 
deformation. (C). Fluid flow may perturb primary cilia leading to mechanosensation. Both matrix 
and cell deformation are also proposed to play a role in osteocyte mechanosensation.  
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It has also been proposed that mechanical 
information is relayed in part by matrix and 
cell deformation (38-40). Typical in vivo 
strains in humans are on the order of 1,200 
to 1,900 µE and were determined using 
strain gauges that covered an area 
approximately 1.8 mm by 3.6 mm; this area 
would contain thousands of cells and the 
strains measured are therefore averages. 
Microstructural strains measured at or near 
osteocyte lacunae were up to 3 times greater 
than the average strains measured with an 
external strain gauge (39;40). This suggests 
that the osteocyte is subjected to larger 
strains than those measured on the external 
bone surface. 
 
Recently, it has been shown that polycystin-
1 and 2 (PKD1 and PKD2), known 
mechanosensory proteins in the kidney, do 
play a role in normal bone structure and that 
cilia do exist on both osteoblasts and 
osteocytes (41). Primary cilia clearly function 
as sensors of odors, light, and movement, 
depending on cell type (42). It remains to be 
determined whether the bone defect in 
animals with reduced or defective PKD1 
function is due to defective mechanosensory 
function in bone cell cilia, as has been 
shown in kidney epithelial cells. Recently, 
Jacobs and coworkers provided preliminary 
data that loss of cilia resulted in decreased 
sensitivity to flow (43). It will be important to 
determine how a single cilium on an 
osteocyte cell body can mediate the 
mechanosensory functions ascribed to the 
osteocyte.   
 
In vivo, it has been shown that physiological 
loading prevents osteocyte apoptosis (44) 
and, conversely, that reduced mechanical 
loading in the tail suspension model 
increases osteocyte apoptosis (45). In vitro 
experiments have shown that fluid flow shear 
stress inhibits osteocyte apoptosis induced 
by serum starvation (46) and that substrate 
stretching prevents dexamethasone-induced 
apoptosis (47). Fluid flow shear stress has 
recently been shown to prevent both 
dexamethasone- and tumor necrosis factor- 
α-induced apoptosis, and this effect was 
shown to be mediated by prostaglandin 
production (48). Mechanical loading is 
therefore protective against apoptosis and 
this effect is mediated through prostaglandin 

production. Prostaglandin can now be added 
to the list of anti-apoptotic factors for 
osteocytes.  
 
Osteocytes as Regulators of 
Mineralization and Mineral Metabolism 
 
The osteoid-osteocyte may control 
deposition of mineral that begins to surround 
and encase this cell while it is embedding 
(49;50). It is also likely that this cell is 
subjected and responsive to loading. 
Mechanosensation may play a role in the 
process of selection of targeted osteoblasts 
on the bone surface to become osteocytes. 
Osteocytes in cortical bone are orderly and 
linearly arrayed. Signals passing from 
embedded cells to selected cells on the bone 
surface may be delivered through gap 
junctions to select a cell that will maintain 
this ordered network. Mature osteocytes also 
have the capacity to modify their local 
microenvironment. Glucocorticoid treatment 
causes mature osteocytes to enlarge their 
lacunae and remove mineral from their 
microenvironment (5). Osteocytes may be 
able to modify their microenvironment in 
response to other factors.  
 
Osteocytes may also play a major role in 
mineral homeostasis. Genes that are highly 
expressed in osteocytes are known 
regulators of mineralization and mineral 
homeostasis. The most convincing evidence 
that osteocytes are regulators of 
mineralization comes from studies of 
SOST/sclerostin. The SOST gene encodes a 
protein, sclerostin, that is highly expressed in 
mature (not early) osteocytes and functions 
as an inhibitor of bone formation (51). The 
human conditions of sclerostosis and van 
Buchem disease are due to mutations in the 
SOST gene, and transgenic mice lacking 
sclerostin have increased bone mass. It 
appears that sclerostin is an indirect inhibitor 
of BMP, but specifically antagonizes the Wnt 
pathway (52) as an antagonist of LRP5, a 
gene shown to be important as a positive 
regulator of bone mass (53). Both Wnt/β-
catenin and SOST are regulated by 
mechanical strain in osteocytes, positively 
and negatively, respectively. Is this one 
means by which loading regulates the bone 
formation and resorption responses? 
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Deletion or mutation of genes that are highly 
expressed in embedding osteocytes and 
mature osteocytes, such as dentin matrix 
protein 1 (DMP1) and phosphate-regulating 
gene with homologies to endopeptidases on 
the X chromosome (PHEX), results in 
hypophosphatemic rickets (4;54). PHEX is a 
cell surface membrane 
metalloendoproteinase and DMP1 is 
expressed along the canaliculi of osteocytes. 
Other players in mineral metabolism include 
MEPE and FGF23, also highly expressed in 
osteocytes (55;56). Therefore, it has been 
proposed that the osteocyte network be 
viewed as an endocrine gland that can 
regulate mineral metabolism.    
 
DMP1, a promoter of mineralization and 
mineral homeostasis, and MEPE, an inhibitor 
of mineralization, both increase sequentially 
in response to mechanical load (10). This 
raises the question whether mineral 
metabolism could be regulated by 
mechanical loading. Another level of 
complexity, but an exciting one!  
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