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The interaction between vitamin D and osteoblasts is complex. In the current review we will give an overview of the

current knowledge of the vitamin D endocrine system in osteoblasts. The presence of the vitamin D receptor in

osteoblasts enables direct effects of 1a,25dihydroxyvitamin D3 (1a,25D3) on osteoblasts, but the magnitude of the

effects is subject to the presence of many other factors. Vitamin D affects osteoblast proliferation, as well as

differentiation and mineralization, but these effects vary with the timing of treatment, dosage and origin of the

osteoblasts. Vitamin D effects on differentiation and mineralization are mostly stimulatory in human and rat osteoblasts,

and inhibitory in murine osteoblasts. Several genes and mechanisms are studied to explain the effects of 1a,25D3 on

osteoblast differentiation and bone formation. Besides the classical VDR, osteoblasts also express a membrane-

localized receptor, and in vitro studies have shown that osteoblasts are capable of the synthesis of 1a,25D3.
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Introduction

In bone, 1a,25dihydroxyvitamin D3 (1a,25D3) is important for
mineralization, either indirectly via control of calcium absorption
in the intestine and reabsorption in the kidney or via direct action
on osteoblasts.1–3 Several in vivo murine studies have indicated
the direct effects of 1a,25D3 on bone; however, the effects
described are different between studies. Transgenic mice
overexpressing the vitamin D receptor (VDR) under control of an
osteoblast-specific promoter showed increased trabecular
bone volume and increased bone strength, indicating an
anabolic effect of 1a,25D3.4 However, similar characteristics
such as increased trabecular thickness and increased osteoid
volume and osteoblast number have been reported in the global
VDR knockout mice,5 pointing to a negative effect of 1a,25D3 on
trabecular development. This latter observation is supported by
a recent study showing increased bone mass in osteoblast-
specific VDR knockout mice.6 However, in this transgenic
mouse model the bone formation parameters were unaltered
and the effect on bone mass was through reduced bone
resorption. Thus, both osteoblast-specific overexpression and
knockout of VDR lead to increased bone mass, revealing
opposite conclusions on the role of vitamin D in osteoblasts and
bone metabolism. Although an explanation for this discrepancy
is yet unclear, these data point to a direct effect of 1a,25D3 on
bone involving osteoblasts.

In the current review, we will discuss the vitamin D endocrine
system in osteoblasts, including its receptor, as well as vitamin
D metabolism and effects on osteoblast activity.

VDR

The classical VDR is a member of the nuclear receptor
family. Upon binding 1a,25D3, the VDR heterodimerizes
with the retionoic X receptor and binds as a dimer to the
vitamin D response element in the DNA to regulate gene
expression.7 The VDR is present is osteoblasts and its
expression can be regulated by 1a,25D3 itself (homologous
upregulation) and by other factors such as parathyroid
hormone (PTH), glucocorticoids, transforming growth
factor-b and epidermal growth factor.8–13 A recent study
identified multiple enhancer sites in the VDR promoter.14

Cyclic adenosine monophosphate response element-binding
protein binding to the VDR promoter was reported as the
potential explanation for the heterologous upregulation of
VDR expression by PTH. Also, the CCAAT enhancer-
binding protein binding to VDR promoter has been linked
to PTH VDR upregulation.15 1a,25D3 upregulated
C/EBPb binding to the VDR promoter, which may have a
role in the homologous regulation of VDR.14 C/EBPb
interacts with VDR in the regulation of CYP24 expression in
osteoblasts.15,16 RUNX2 is a key transcription factor
in osteoblast differentiation. Interaction of VDR with RUNX2 in
the regulation of osteocalcin and osteopontin expression by
osteoblasts has been shown.17,18 It is now well established
that 1a,25D3 and VDR regulate gene transcription in
osteoblasts and in all other target cells via interaction with
a multitude of other transcription factors and DNA and
histone-modifying proteins.7
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24-Hydroxylase (CYP24)

CYP24 is the most sensitive gene for 1a,25D3 regulation and is
expressed in all target cells—that is, cells expressing VDR.
CYP24 encodes the enzyme 24-hydroxylase. Hydroxylation of
1a,25D3 at the C-24 position is the first and rate-limiting step in
the degradation of 1a,25D3.19–21 The VDR level in osteoblasts is
tightly coupled to the induction of CYP24 expression and 24-
hydroxylase activity and thereby to the degradation of 1a,25D3.
Thus, homologous upregulation of VDR concomitantly induces
the inactivation of 1a,25D3 and thereby limits its effect.8,22 Other
1a,25D3 responses do not follow the change in VDR level. For
example, although transforming growth factor-b-induced
upregulation of VDR is followed by an increase in 24-hydro-
xylase activity, 1a,25D3 stimulation of osteocalcin expression is
inhibited.23 The impact of VDR regulation may depend on the
type of regulator and/or target cell.12,24 Besides regulation of
VDR level, VDR activity can also be regulated by phosphor-
ylation. 1a,25D3 itself as well as activation of protein kinase C
involving casein kinase II can phosphorylate VDR and thereby
affect 1a,25D3 transcriptional activity.25–27

Hydroxylation of 1a,25D3 or 25(OH)D3 at the C-24 position
does not directly lead to an inactive vitamin D molecule. Classic
studies by Henry and Norman demonstrated the significance of
24,25D3 for normal chicken egg hatchability and calcium and
phosphorus homeostasis.28,29 Several human and animal
(chicken, mouse, rat) studies showed effects of 24,25D either
alone or in combination with other hormones on bone meta-
bolism. It has already been shown in 1980 that 24,25D3 directly
stimulates calcification of bone synergistically with PTH and
that 24,25D3 decreased the number and size of resorption sites
in bone.30,31 24,25D3 restored the reduction in bone mineral
apposition rate in vitamin D-deficient rats and enhanced the
bone mineral apposition rate restoration by PTH in para-
thyroidectomized rats.32 One study showed, on the basis
of histomorphometric data, no effect of 24,25D3 in ovar-
iectomized rats.33 Another study with ovariectomized rats
showed that 24,25D3 in contrast to 1a,25D3 increased the
breaking force with minimal effect on mineral content. The
authors suggested that 1a,25D3 and 24,25D3 act differently
on the matrix and mineral phase of the bone.34 24,25D3,
together with 1a,25D3, improved bone mechanical strength in
chickens.35 24,25D3 treatment improves fracture healing,36 and
interestingly 24,25D3 serum levels are correlated to fracture
healing.37 A role for 24,25D3 in fracture repair is supported by
studies in the CYP24 knockout mouse.38 However, in a human
study no positive association of 24,25D3 with femoral fracture
was observed.39 A study on pre-dialysis renal insufficiency
patients treated with either 1a(OH)D3 alone or in combination
with 24,25D3 supported a direct, that is, PTH-independent,
functional role of 24,25D3 in bone. 24,25D3 together
with 1a(OH)D3 but not 1a(OH)D3 alone preserved the osteo-
blast perimeter, and improved mineralization activity was
observed.40 These data suggest a direct role in bone cells—in
particular, in osteoblasts. Van Driel et al. have shown in in vitro
studies that indeed 24,25D3 has direct effects on human
osteoblasts similar to that of 1a,25D3.41 It should be noted that,
as 24-hydroxylation is the first step of a degradation cascade,
whether biological active levels of 24,25D3 or 1,24,25D3 can be
reached depends fully on the velocity of the subsequent steps in
the degradation pathway.

The presence of VDR in osteoblasts42,43 thus enables direct
effects of 1a,25D3 on osteoblasts, but the magnitude of the
effects is subject to the presence of other factors. It is therefore
important to consider the effects on osteoblasts in the context
of interaction with other hormones (for example, PTH,
cortisol),9,12,44,45 growth factors such as transforming growth
factor-b, insulin-like growth factor-I, bone morphogenetic
factor, interferon, hepatocyte growth factor, epidermal growth
factor,3,46–51 and other signaling molecules such as the
peroxisome proliferator-activated receptor ligand rosiglitazone
and Wnt signaling.52 Alternatively, 1a,25D3 or non-hypercal-
cemic 1a,25D3 analogs may change the activity of other
hormones, factors and signaling cascades. 1a,25D3 enhanced,
for example, the 17b-estradiol effect in female but not in male
human osteoblasts, as assessed by increased creatine kinase
response.53

Proliferation

The proliferative effects of 1a,25D3 on osteoblasts of various
origin, such as mouse, rat and human, have been studied.
1a,25D3 can inhibit the proliferation of osteoblasts54–61 and also
stimulate osteoblast proliferation.56,62,63 1a,25D3 has been
reported to decrease the number of viable MC3T3 osteo-
blasts64 as well as to inhibit65 and induce osteoblast apop-
tosis.66 In contrast, in human SV-HFO osteoblasts, no clear
1a,25D3 effect on proliferation was observed.67 Overall, the
data point to an impact of 1a,25D3 on osteoblast proliferation,
cell viability, apoptosis and processes related to the cell cycle.
However, the 1a,25D3 effect appears to vary with the timing of
treatment, dosage and origin of the osteoblast.68–70

Differentiation and Mineralization

1a,25D3 is a regulator of bone metabolism and functions by
stimulating the production of bone matrix proteins (for example,
collagen, osteopontin, osteocalcin, matrix Gla protein) and
activity of alkaline phosphatase activity involved in miner-
alization. 1,25D3 interacts with the osteoblast differentiation
regulatory Wnt signaling cascade. 1a,25D3-activated VDR
binds in osteoblasts of various origin to the promoter of the
gene-encoding LRP5, the Frizzled co-receptor-initiating
canonical Wnt signaling, and increases LRP5 mRNA levels.71

1a,25D3 enhanced b-catenin signaling in human TE-85
osteoblasts.45

So far, 1a,25D3 has been shown to stimulate bone formation
and mineralization in all studies using human osteoblasts and to
stimulate osteogenic differentiation from human mesenchymal
stem/stromal cells (MSCs).41,67,72–76 1,25D3 enhanced
mineralization through its effects on human osteoblasts before
the onset of mineralization.2 Thus, 1,25D3 is not directly
involved in the process of mineral deposition but more likely in a
process preparing the environment/extracellular matrix for
mineralization. Gene expression profiling studies demonstrated
that the 1,25D3 effect is not likely primarily due to changes in
expression of the environment/extracellular matrix proteins and
thereby not due to composition of the environment/extracellular
matrix.2 Some studies on the expression and production of
procollagen type I by human osteoblasts have demonstrated
stimulation,77,78 whereas others have shown no effect.78–80

However, 1a,25D3 significantly induced the production of
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alkaline phosphatase-positive matrix vesicles81 providing a
means to enhance mineralization.2 Studies on ovariectomized
rats supported a positive effect of 1a,25D3 and of an 1a,25D3
analog on bone formation and mineralization.82,83 However,
studies on the expression of collagen type I in isolated rat
osteoblasts showed either an inhibition or no effect.84,85

In contrast, 1a,25D3 inhibits differentiation and mineralization
in cultures of murine osteoblasts such as MC3T3 cells,3,50,64,86

and murine osteoblasts lacking the VDR have increased
osteogenic potential.87 Collagen type I has been shown to be
stimulated, inhibited or not affected by 1a,25D388,89 Inhibition of
mineralization is supported by the observation that 1a,25D3
increases, in a VDR-dependent manner, the expression of
ectonucleotide pyrophosphatase phosphodiesterase (ENPP1)
and progressive ankylosis in murine osteoblasts, leading to an
increase in the mineralization inhibitor pyrophosphate.90 This
and other studies also demonstrated a 1a,25D3 increase in
osteopontin, which has been shown to inhibit mineralization.91

However, there have been specific transgenic murine models,
for example, with osteoblast-specific VDR overexpression, that
show increased bone formation and mineralization.4,92,93

Further, a study has demonstrated a positive effect of the
1a,25D3 analog on bone nodule formation and mineralization in
murine calvarial osteoblast cultures of wild-type but not VDR-
null mice83 and a study demonstrated increased mineralization
in a study with MC3T3 cells.89

Overall, the current observations show variation in the effects
of vitamin D on differentiation and mineralization, with the
effects overall being stimulatory in human and rat osteoblasts
and inhibitory in murine osteoblasts.50,67 In line with this, in
human osteoblasts 1a,25D3 has been shown to increase
RUNX2 expression,61,73,94 whereas in murine osteoblasts
1a,25D3 suppresses the RUNX2 promoter and inhibits RUNX2
expression.73,95 The role of osteocalcin needs to be empha-
sized upon in this discrepancy between mouse and human
osteoblasts. Human and mouse osteocalcin genes are dif-
ferently regulated by 1a,25D3.96 In contrast to human and rat
osteoblasts in which 1,25(OH)2D3 stimulates BGLAP expres-
sion, 1,25(OH)2D3 inhibits BGLAP expression in murine
osteoblasts,97,98 further supporting differences between
murine and human/rat osteoblasts with respect to vitamin D
responsiveness and mineralization (Table 1).

A full explanation for this apparent discrepancy between
human and murine osteoblasts is absent. Extracellular milieu
(see above section VDR) as well as the intracellular milieu of the
cell is important for the eventual effect of the 1a,25D3 as
exemplified by the fact that insulin-like growth factor-binding
protein-6 can bind to the VDR and inhibit 1a,25D3 induction of
alkaline phosphatase activity.99 Also, extracellular conditions
like phosphate concentration100 or growth factors and cyto-
kines may determine the eventual effect of 1a,25D3.46,91,101

These characteristics may contribute to the differences in
1a,25D3 effects observed in human and murine osteoblasts.
However, within studies on murine osteoblasts also differences
were observed, with inhibition of mineralization in cultures of
calvarial osteoblasts and no effect in osteoblasts derived from
long bones.102 Respective parts of the mammalian skeleton
differ from each other in origin, mode of osteogenesis and
function. The axial and appendicular skeletons originate from
the mesoderm, whereas the skull bones originate from the
cranial neural crest. Regarding formation, the calvaria are
formed by intramembranous bone formation and the long
bones by endochondral formation. Interestingly, the most
widely used murine osteoblast cell line, MC3T3, is of calvarial
origin.103 For the MC3T3 cells, the number of passages
influences the grade of mineralization104 which may also have
an impact on 1a,25D3 action. However, passaging of a human
osteoblast cell line did not affect VDR level and the 1a,25D3
response.105 Although different from cell passaging, age of the
donor of MSCs has been shown to be negatively correlated with
the 1a,25D3 stimulation of alkaline phosphatase activity and
osteocalcin expression in osteogenic human MSCs.76 Unfor-
tunately, stimulation of mineralization was not analyzed with
respect to age in this study. An additional factor that influences
the 1a,25D3 effect is the differentiation stage of osteoblasts and
basal level of expression of the gene/protein of interest.2,89,106

In vivo studies with rats demonstrated a direct anabolic effect
of 1a,25D3 on bone. Both chronic treatment with 1a,25D3107

and short-term treatment108 increased bone formation. The
number of osteoblast precursors and osteoblasts was
increased by both treatment regimens, which may explain the
increased bone formation. However, in hypocalcemic VDR
knockout mice lacking 1a,25D3 signaling, an increase in
osteoblast number and osteoid volume was observed.5

Alternatively, evidence for a direct 1a,25D3 bone anabolic effect
was provided by the results of a study with osteopenic
ovariectomized rats.109 These apparent contradictive data
suggest species differences in the effect of 1a,25D3 on
bone. Besides species differences, a number of additional
parameters like diet (that is, composition and concentrations
of minerals), age, sex, timing of treatment, duration of
treatment,2,94,106,110–113 dosages, etc. should be taken into
account when comparing in vivo studies. However, it is not
always possible to include these modifying factors in the
comparison and interpretation as they are often missing or not
reported in sufficient detail. These data together with the
discussed differences in in vitro mineralization and osteocalcin
expression in osteoblasts warrant careful interpretation of the
data while translating to the human situation.90,114,115

Gene Expression and Gene Expression Profiling Studies

Besides the already mentioned effects of 1a,25D3 on RUNX2,
several other genes and potential mechanisms have been
studied in order to explain the effect of 1a,25D3 on osteoblast
differentiation and bone formation. 1a,25D3-induced c-MYC
expression has been implicated as an accelerator of human
osteoblast differentiation by enhancing BMP-2-induced bone
formation.116 Expression of insulin-like growth factor-binding
proteins-2, -3 and -4 in human MSCs is induced by 1a,25D3 and
may have a role in the stimulation of osteogenic differentia-
tion,117 although this functional role for the binding proteins

Table 1 Summary of 1a,25(OH)D3 on differentiation-related responses in human,

mouse and rat osteoblasts

Human Mouse Rat

Alkaline phosphatase m k/m/¼ m/k
Collagen type I m/¼ k/m/¼ k/¼
Osteocalcin m k m
Mineralization m k/m m
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needs to be demonstrated. Forkhead Box O (FoxO) tran-
scription factors were differentially regulated by 1a,25D3 in
MC3T3 osteoblasts; FoxO3a was upregulated, FoxO1 was
downregulated and FoxO4 level was not changed. Knockdown
of the FoxOs did not change the 1a,25D3-induced expression of
CYP24 and cell cycle regulators, nor the inhibition of pro-
liferation by 1a,25D3.118 Unfortunately, the effect on 1a,25D3
inhibition of mineralization by these murine MC3T3 osteoblasts
was not reported. The changes in FoxO expression were linked
to an increase in reactive oxygen species accumulation. This
may be linked to cellular metabolism and bone formation,
as this is a high-energy-demanding process.119–121 Glucose,
insulin and 1a,25D3 regulation of proliferation, alkaline
phosphatase activity and production of (uncarboxylated)
osteocalcin has been studied in isolated rat osteoblasts but no
coupling to mineralization was made.122

In view of the relationship between bone formation and
angiogenesis, the observation of 1a,25D3-increased vascular
endothelial growth factor (VEGF) expression in human and rat
osteoblasts is of interest,123–125 and the vascular endothelial
growth factor has been shown to have a role in the 1a,25D3
anabolic effect.126

A recent observation provided evidence for microRNA
(miRNA)-637 and miRNA-1228 in the 1a,25D3 stimulation of
human osteoblast differentiation for the first time.127 It is
becoming evident that miRNAs have an important role in
osteoblast differentiation and bone formation,128 and in the near
future more data on their role in 1a,25D3 action in osteoblasts
will come forward.

Activin A inhibits osteoblast differentiation and mineraliza-
tion.129 1a,25D3 stimulated the expression of activin A in
human osteoblasts.130 Thus, 1a,25D3, as stimulator of
osteoblast differentiation and mineralization, also stimulates the
production of an inhibitor. The hypothesis that this serves a role
in preventing over-mineralization is supported by the obser-
vations that the activin A blocker follistatin enhances 1a,25D3-
stimulated mineralization.130 The induction of carboxylated
osteocalcin by 1a,25D3 may fit this hypothesis and provide
further support. 1a,25D3-induced accumulation of osteocalcin
in the extracellular matrix of human osteoblast cultures is
inhibited by warfarin (antagonist of vitamin K), whereas vitamin
K2 (cofactor of g-carboxylase) enhanced the 1,25 D3 effect.131

Vitamin K2 metabolism is stimulated by 1a,25D3,132 and
1a,25D3-stimulated mineralization was significantly aug-
mented by warfarin.130 Although not fully delineated, these data
on activin A, follistatin, warfarin and vitamin K put forward a
1a,25D3-induced regulatory mechanism to control and guar-
antee optimal mineralization.130 Differences in these regulatory
loops may also be part of the differences in 1a,25D3 effects
between human and murine studies.

Several gene expression profiling studies have been per-
formed to examine the effect of 1a,25D3 on RNA expression in
osteoblasts. The reported inhibition of proliferation of murine
MC3T3 osteoblasts was linked to downregulation of DNA
replication genes in the same cells.54 Gene expression profiling
on multiple days during the differentiation phase before
mineralization did not reveal a specific set of DNA replication
genes being regulated in human osteoblasts.2 Gene ontology
analyses did identify genes that were linked to the cell cycle
phase, RNA splicing translation and cell death as being most
significantly overrepresented.2 Interestingly, this study

demonstrated a strong difference between the genes regulated
in the period preceding the mineralization and those regulated
during mineralization. Only 0.6% (3 genes)of the genes regulated
in the mineralizing period were also regulated before miner-
alization.2 A gene expression profiling study investigating the
effect of 24-h of 1a,25D3 treatment on primary human osteo-
blasts identified by Ingenuity IPA (http://www.ingenuity.com)
various biological functions and/or diseases related to bone
metabolism. Cellular Processes or Molecular Function IPA
analyses identified functions related to skeletal development.133

In relation to skeletal development, 1a,25D3-induced expression
in murine and human osteoblasts of the odd-skipped related
genes Osr1 and Osr2, known from expression in the developing
limb, is of interest.134

Gene expression profiling after 24 h of treatment with 1,25D3
identified functions and processes related to the immune
system.133 In line with this is the observation of a gene profiling
study showing interferon-related genes being overrepresented
after 1a,25D3 treatment of human osteoblasts. The interferon
signaling-related genes were downregulated by 1a,25D3.48

Interferon-b inhibits mineralization through an effect in the very
early phase of osteoblast differentiation, which is overruled by
1a,25D3.48,135

Besides regulating bone formation, 1a,25D3 may also reg-
ulate bone resorption through expression of the regulators of
osteoclast formation receptor activator of nuclear factor-k
B ligand and osteoprotegerin.45,67,68,80,112,136–138 The rela-
tionship between 1a,25D3 stimulation of bone formation and
induction of regulators of bone resorption with respect to
osteoblast differentiation is yet unclear. In other words, does
1a,25D3 regulate these processes at different stages of
osteoblast differentiation?

Membrane Receptor/non-VDR-mediated Effects

Besides the classical VDR, the presence of a membrane-loca-
lized receptor for 1a,25D3 has been described to be present in
osteoblasts.139 This receptor, described as 1,25D3 membrane-
associated rapid response-binding protein (1,25D3MARSS) or
protein-disulfide isomerase-associated 3 (Pdia3) and also known
as ERp60, ERp57 or Grp58, may have a role in rapid responses to
1a,25D3.140 Rapid effects of 1,25D3 on intracellular ionized
calcium in isolated murine osteoblasts have been reported
already in 1987.141 A role of rapid calcium signaling is supported
by a study using 1,25D3 and a vitamin D analog previously shown
to induce rapid calcium influx without binding to the VDR. Gene
expression profiling showed that these compounds induce in 3 h
the same set of genes.142 Pdia3 mediates the rapid effects of
1,25D3 on prostaglandin E2 production and protein kinase C
activation.143 Previously, we had shown that protein kinase C is
involved in homologous VDR upregulation and osteocalcin
production in rat osteoblasts.137 Data obtained withwild-typeand
VDR knockout osteoblasts suggested that 1,25D3 affects
mechanical loading-induced nitric oxide production in a VDR-
independent manner.144 It is unclear whether Pdia3 is involved in
this effect. A recent study showed interaction between 1,25D3
and BMP2 in the regulation of osteoblast marker gene expression
and mineralization in MC3T3 osteoblasts in which both VDR and
Pdia3 are involved.3 However, earlier data showed that 1a,25D3-
induced differentiation of human osteoblasts and mineralization
was blocked by the VDR antagonist ZK159222, whereas the
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membrane receptor antagonist 1b,25D3 did not change the
1a,25D3 action.41 thereby questioning a role for a vitamin D
membrane receptor in the action of 1a,25D3 on osteoblast
differentiation and mineralization.

1a-Hydroxylase (CYP27B1)

Studies published in 1980 and 1981 already reported that cells
isolated from chicken calvaria145 and a human osteosarcoma
cell line as well as bone cells isolated from an ileac crest
biopsy146 can produce 1,25D3. Although 1a-hydroxylase
(CYP27B1) expression has been shown in a range of normal and
diseased states, bone was never considered a 1,25D3-
synthesizing tissue. Functional consequences of the observed
1a-hydroxylase activity for osteoblast biology were unclear.
In 2006, we demonstrated that CYP27B1 is expressed and
that 25(OH)D3 is hydroxylated at the C-1 position in human
and mouse osteoblasts.67 Most importantly, this study also
demonstrated functional consequences of 1a-hydroxylation in
human osteoblast differentiation. Incubation with 25(OH)D3
induced the expression of CYP24 and osteocalcin and
stimulated alkaline phosphatase activity and mineralization,
which was blocked by the 1a-hydroxylase inhibitor ketoco-
nazole. This was supported by a study using small interfereing
RNA to silence CYP27B1 in human osteoblasts.55 Further
support for the functionality of 1a-hydroxylase came from a
study showing the requirement of CYP27B1 for proliferation and
the osteogenic differentiation of human MSCs.147 This effect
was age dependent with reduced CYP27B1 expression in
MSCs of older subjects and resistance to 25(OH)D3-induced
osteoblast formation.148 Inhibition of histone deacytylase
blocked the 1a-hydroxylase-dependent 25(OH)D3 stimulation
of alkaline phosphatase activity in human MSCs.149

So far, these data on 1,25D3 synthesis by osteoblasts are
derived from in vitro studies. The in vivo significance of
CYP27B1 expression in osteoblasts and osteoclasts has yet to
be proven, for example, by osteoblast-specific CYP27B1
knockout mice. However, the observed human-murine differ-
ences should be taken into account, but this may be overcome
in the future because of the progress in generating transgenic
rats. Although in vivo proof is lacking, the principle of local
synthesis of 1,25D3 in bone provides a basis for explaining the
correlations of bone as well as of other parameters with
25(OH)D3 and not with 1,25D3 as discussed by Anderson and
colleagues.150,151 A preliminary report showed a decrease in
CYP27B1 expression in MSCs of chronic kidney disease
patients, but 25(OH)D3 was still able to induce alkaline
phosphatase activity similar to that in control MSCs.152

Additional studies are needed to confirm and extend this
observation but it may suggest a role for autocrine/paracrine
1,25D3 formation and adequate 25(OH)D3 levels for proper
bone metabolism in chronic kidney disease.

Regulation of CYP27B1

Two regulators of renal 1a-hydroxylase, PTH and ambient
calcium, did not change CYP27B1 in differentiated human
osteoblasts.67 In contrast, PTH stimulated CYP27B1 expres-
sion in human MSCs.148 A similar difference was observed for
the effect of 25(OH)D3. CYP27B1 expression was stimulated by
25(OH)D3 in human MSCs,153 whereas it was not affected in

mature osteoblasts.67 These data point to an apparent dif-
ference in CYP27B1 regulation between MSCs and mature
osteoblasts. 1,25D3 inhibits CYP27B1 expression in human
MSCs, resembling the effect in the kidney.153 Insulin-like growth
factor-I stimulates CYP2B1 in human MSCs.153 Interferon-b
reduces while interleukin-1 increases CYP27B1 expression in
mature human osteoblasts.48,67 The effect of interleukin-1
points to the involvement of nuclear factor-kB in the stimulation
of CYP27B1 expression in human osteoblasts. The observed
inhibition of nuclear factor-kB by interferon-b in synoviocytes154

and regulation of CYP27B1 in human dendritic cells support
this.155 However, a positive role for nuclear factor-kB has been
challenged by CYP27B1 promoter studies, but these studies
were performed in human embryonic kidney cells (HEK-293
cells).156 This limited set of data on regulation of CYP27B1
demonstrate that its regulation in osteoblasts is far more
complex than in the kidney, involves local regulators like
cytokines and growth factors, and may differ depending on
differentiation stage.

Human osteoblasts also express the vitamin D binding
protein receptors cubulin and megalin that are involved in
cellular uptake of 25(OH)D3.55,67 Also vitamin D3-25-hydro-
xylases CYP2R1 and CYP3A4 mRNA are expressed in human
osteoblasts;67 however, 25-hydroxylase functionality in
osteoblasts needs to be proven. In conclusion, the expression
of these enzymes and vitamin D binding protein receptors
together with CYP24 and VDR expression demonstrates that
the complete vitamin D endocrine system is present in
osteoblasts enabling auto- and paracrine effects in bone and
bone marrow.
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