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Bone sarcomas include a very large number of tumour subtypes, which originate form bone and more particularly from

mesenchymal stem cell lineage. Osteosarcoma, Ewing’s sarcoma and chondrosarcoma, the three main bone sarcoma

entities develop in a favourable microenvironment composed by bone cells, blood vessels, immune cells, based on the

‘seed and soil theory’. Current therapy associates surgery and chemotherapy, however, bone sarcomas remain diseases

with high morbidity and mortality especially in children and adolescents. In the past decade, various new therapeutic

approaches emerged and target the tumour niche or/and directly the tumour cells by acting on signalling/metabolic

pathways involved in cell proliferation, apoptosis or drug resistance. The present review gives a brief overview from

basic to clinical assessment of the main targeted therapies of bone sarcoma cells.
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Introduction

Current treatment of malignant primary bone tumours consists
of excision of the tumour, associated with high toxicity chemo-
therapy. Unfortunately, in many cases, an absence of
response to anti-tumour drugs is observed, leading to the
development of metastases and the death of the patient.
Survival is closely correlated to the response of tumour cells to
anti-mitotic drugs, reaching 70% in 5 years for osteosarcomas
in the best series and only 30% when the pulmonary
metastases are detected at the time of diagnosis. Ewing’s
sarcomas also give a poor prognosis in their metastatic form. In
fact, the prognosis of patients with bone or medullary
metastases and that of patients who relapse is very poor and
o25% of them are cured. Tumours found at the time of
diagnosis but that resist to initial chemotherapy also give a poor
prognosis. Whether the main cause of most bone sarcomas are
unknown, the close relationship between tumours cells and
their local microenvironment strongly contributes to their
survival and proliferation.1 This ‘seed and soil’ theory leads to
define the notion of ‘niche’, which is a specialized environment,
which promotes the emergence of tumour stem cells
and provides all the factors required for their development.
Consequently, a vicious cycle established between the niche
and tumour cells is now well recognised for bone sarcomas2–4

and has been used as therapeutic targets.5,6 For instance, bone
resorption component has been targeted by bisphosphonates
and in combination with conventional chemotherapy has shown

promising efficacy by enhancing tumour regression and tissue
repair and by decreasing lung metastases.7–11 The most recent
knowledge on the biology of bone sarcomas has identified new
therapeutic targets expressed by tumour cells, opening a new
era of the therapeutic development.1,12 Targeted therapies
could be defined as more specific than conventional che-
motherapeutic agents, which target tumour cell proliferation as
a whole. The advent of targeted therapies is related to the
development of more sophisticated techniques of molecular
biology allowing the clinicians to gain insight into genomic
and transcriptional data on specific genes whose expression
is modulated during tumourigenesis. These new targets
constitute the basis for the development of new therapeutic
options in many types of cancers including bone sarcomas.
Promising data have been published on preclinical studies,
some being confirmed at the clinical level. The present review
gives a brief overview from basic to clinical assessment of the
main targeted therapies recently developed for bone sarcomas.

Inhibition of Growth Factor/Cytokine Signalling Pathways

Most of the signalling pathways are implicated in cell pro-
liferation and apoptosis resistance. They are mediated by
proteins with kinase activity, both outside (at the cell membrane)
or inside the cells (cytoplasm or nucleus). These proteins may
be inhibited by monoclonal antibodies directed against extra-
membrane receptor or small molecule inhibitors of the intra-
cellular kinase domain (Figure 1; Table 1).
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Therapies based on targeting of IGF1-R and associated
downstream signalling pathways. The insulin-like growth
factor-1 receptor (IGF1-R) pathway has an important role in
osteosarcoma and Ewing’s sarcoma.13 As both tumours have a
peak incidence at puberty and because osteosarcoma occurs
in zone of high bone remodelling rate at long bone metaphyses,
a role of growth hormone and insulin-like growth factor is
suggested. Concerning Ewing’s sarcoma, the IGF axis has been
also shown to be a direct target of the EWS–FLI-1 fusion gene.14

Indeed, gene profiling of Ewing cells in which the EWS/FLI-1
fusion gene had been inactivated allowed the identification of
downstream targets. Among these targets, the IGF-binding
protein 3 (IGFBP-3) gene, a major regulator of IGF-1
proliferation and survival signalling, was strongly induced upon
treating Ewing cells with EWS/FLI-1-specific small interfering
RNAs. Ligand binding to IGF-1 receptor activates the down-
stream PI3K/Akt/mTOR pathways, stimulates osteosarcoma
and Ewing’s sarcoma cell survival and angiogenesis through
hypoxia inducible factor-1a and vascular endothelial growth
factor (VEGF) secretion. Preclinical data using IGF-R1 inhibitors
against xenograft models of paediatric sarcomas, coupled with
responses in adults with Ewing sarcoma, have generated
significant excitement about the clinical potential of this class of
drugs and have driven the rapid development of numerous
clinical trials now under way. In contradiction with the ever-
lasting antagonist concept, it has been shown that they can
induce receptor downregulation rather than inhibition of the
IGF1 effect.15 With different anti-IGF1-R monoclonal anti-
bodies, children and adolescents suffering of relapsed or
refractory Ewing’s sarcoma had stable disease (SD) in phase I
trials16 and 10–15% of objective responses in paediatric/adult
phase II trials.17–19 SDs were observed in relapsed/refractory
osteosarcoma (SCH 717454, ongoing study P04720,
NCT00617890).20 Predictive factors of the response remain,
however, largely unknown. A reduced activity of the IGF system
might associate with tumour progression and poor response to

treatment,21 high expression levels of IGF-IR, insulin-like
receptors (IR) and IGF-I mRNAs with increased survival, and
high circulating IGF-1 levels with low progression risk.22

Unfortunately, the median duration of Ewing’s sarcoma
response was very low,17,18 probably because tumour cells
escape through AKT or other feedback loops of signalling
pathway. These observations lead to consider using either
combination of mono-targeted inhibitors or multi-targeted
inhibitors.

mTOR being a downstream pathway activated by IGF-1
binding to its receptor IGF1-R, its targeting has been also largely
studied. The mTOR inhibitor rapamycin was first used in
children to prevent graft rejection. mTOR, an intra-cytoplasmic
serine kinase regulated by AKT has been envisaged to treat
osteosarcoma.23,24 In osteosarcoma cells, rapamycin inhibits
proliferation through ezrin,25 a protein implicated in intracellular
signal transduction and migration. In paediatric Ewing’s
sarcoma, phospho-mTOR overexpression is correlated with
survival.26 Paediatric phase I trials of everolimus and temsir-
olimus have shown a good tolerance profile.27,28 One osteo-
sarcoma patient treated by everolimus out of 5 treated by mTOR
inhibitors had prolonged SD.27 Ridaforolimus phase II in
sarcomas shows a low response rate o2% (2/4 patients
with responses had osteosarcoma), but 28% of clinical
benefit.29 An everolimus phase II study in children and
adolescents with refractory or relapsed osteosarcoma
(NCT01216826) is ongoing. A double-blind phase III comparing
ridaforolimus against placebo (SUCEED trial) in sarcoma
maintenance treatment after stabilisation or regression under
chemotherapy, have included 50 bone sarcomas and showed
an increased progression free survival (PFS) with mTOR
inhibitor.30 A paediatric phase II is ongoing in refractory or
relapsed osteosarcoma in Brazil (NCT01216826). Strategies
targeting simultaneously at several levels the IGF1-R/PI3K/
AKT/mTOR pathways are being evaluated in preclinical
models.31 A phase I–II of Ridaforolimus combined with the

Figure 1 Targeting of signalling pathways. Tyrosine kinase receptors (IGF1-R (right panel) and others such as VEGFR, PDGFR, c-MET and so on (left panel)) are activated upon
binding of their respective ligands to their extracellular domain. It subsequently leads to activation of various signalling pathways (PI3K/Akt/mTOR, Ras/RAF/MEK and so on)
promoting malignancies. In red, are mentioned the main therapies based on targeting of tyrosine kinase proteins and on associated downstream signalling pathways. Multi-target
inhibitors has been also developed (dual PI3K/mTOR, dual mTOR/DNA-PK, dasatinib and so on).
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anti-IGF1-R antibody Dalotuzumab is ongoing (NCT01431547)
in children in Europe and United States. Dual PI3K/mTOR
inhibitors (NVP-BEZ235 and so on) are in adult phase I trial and
dual mTOR/DNA-PK inhibitor (CC-115) in adolescent/adult
phase I trial (NCT01353625). To bypass resistance to mTOR
inhibitors, which have been observed in some patients,
combined treatment with bisphosphonate showed promising
efficacy in preclinical models of osteosarcoma.32

Multi-target inhibitors for bone sarcomas. As several
signalling pathways are activated during tumour growth, the
development of drugs that have several targets (mostly with
kinase activity) has recently emerged in many types of cancers,
including osteosarcoma and Ewing’s sarcoma (Table 1).

Imatinib mesylate inhibits PDGFR, c-KIT and BCR-ABL. High
expression of c-KIT (stem cell factor receptor) and platelet-
derived growth factor receptor (PDGFR) is observed in Ewing’s
sarcoma and osteosarcoma33 and associated with low event
free survival but not with poor response to chemotherapy.33

Imatinib appeared to have an anti-Ewing’s sarcoma activity

in vitro and in xenografts.34 However, expression of imatinib
targets is not sufficient to confer drug sensitivity.35 Several
phase II trials have shown stabilisation of bone sarcomas (3/20
Ewing’s sarcoma, 7/26 osteosarcoma) with a median PFS
o2 months.36,37 In a COG paediatric phase II trial, only 1/24
Ewing’s sarcoma had partial response (PR).38 Preclinical data
showed increased anti-tumour activity of imatinib mesylate
when combined with doxorubicin and vincristin39 in Ewing’s
sarcoma or ifosfamide in osteosarcoma.32

Dasatinib inhibits Src and BCR-ABL. Dasatinib shows in vitro
cytostatic and anti-migration effect and no apoptosis in Ewing’s
sarcoma.40 Src has a role in osteosarcoma cell adhesion/
migration through FAK decrease, but its inhibition does not
prevent metastasis,41 suggesting a secondary role for Src in this
process. Paediatric phase I trial showed similar dasatinib
pharmacokinetic in children and adults.42

Sorafenib inhibits BRaf, c-KIT, PDGFR, VEGFR, RET. In osteosarcoma,
sorafenib inhibits tumour growth, angiogenesis (by VEGF
inhibition), invasion (by MMP2 inhibition) and pulmonary

Table 1 New therapeutic approaches for osteosarcoma and Ewing’s sarcoma

Targets Therapeutic agents Preclinical (P)/clinical
assessment

Clinical trials n1 References

IGF1-R inhibitors R1507; SCH 717454; CP-751871;
IMC-A12

Phase I/II paed NCT00617890
SCH717454
P04720

16–20

mTOR inhibitors Everolimus (RAD001, Afinitor)
Temserolimus (Torisel)
Ridaforolimus
RAPIRI

II Paed (OS)
I paed (EWS)
I/II paed
Phase II
Phase III ad
Phase I paed

NCT01216826
NCT01216826
SUCCEED
ongoing

27

27

28

29

30

Multitarget inhibitors
PDGFR, c-Kit, BCR-ABL
Src, BCR-ABL
BRaf, c-KIT, PDGFR, VEGFR, RET
Flt3, c-KIT, PDGFR, VEGF
VEGFR1-3, PDGFRa/b, c-KIT

Imatinib mesylate (Glivec)
Dasatinib (Spryvel)
Sorafenib (Nexavar)
Sunitinib (Sutent)
Pazopanib

I
I Paed (OS/EWS)
Phase II paed
Phase I Paed
Phase II (OS)
P
Phase I paed

36,37

38

42

44

45

46

47,48

Cell cycle inhibitors CDK inhibitors (Dinaciclib)
Regin-G
Aurora A inhibitor (MLN8237)
Aurora A inhibitor (AT9283)
PLK1 selective inhibitor (BI 2536)
MDM2 inhibitors (Nutlin-3)
MDM2 inhibitor (RO5503781)

P
Phase I/II ad
P
Paed phase I
Phase I paed
P
P
Adult Phase I

NCT01154816
NCT00985868
NCT01431664
NCT01462175

49

50

51

52

53

Apoptosis BCL-2 inhibitor (Navitoclax)
TRAIL
Smac mimetic (LCL161)
X-linked IAP antisense

Phase I adþdocetaxel
P
P
Phase I adults
þ paclitaxel
P

NCT01098838
NCT01240655

56

57–61

62

63

Telomerase inhibitors TMPyP4 P 65–68

Hedgehog pathway inhibitors
(SHH/PATCH/Smo/GLI)

Cyclopamine, arsenic trioxide
LDE225

P
Phase I paed

NCT01125800 73–75

HDAC inhibitors HDAC inhibitors (SNDX-275)
FK228
Vorinostat, valproic acid

P
P
Phase I paed

79–83

86–88

77,78

HSP90 inhibitors 17-AAG P
Phase I paed

89,90

c-Met inhibitors PF-2341066 P 94,95

Abbreviations: Ad, adult patients; EWS, Ewing’s sarcoma; HSP, heat shock protein; IGF, insulin-like growth factor; OS, osteosarcoma; Paed, paediatric patients; PDGFR,
platelet-derived growth factor receptor; TRAIL, TNF-related apoptosis-inducing ligand; VEGFR, vascular endothelial growth factor.
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metastases formation (via inhibition of the Ezrin/b4-integrin/
PI3K signalling pathway), and induced apoptosis.43 A phase II
trial of 35 osteosarcoma patients aged more than 14 years
treated in second or third line showed 14% of objective
response (3 PRs, 2 minor responses and 29% of tumour control
(12 additional SDs). Tumour control lasted X6 months for
8 patients. The median PFS and survival were 4 and 7 months,
respectively.44

Sunitinib inhibits Flt3 (fms-related tyrosine kinase-3), c-KIT, PDGFR,
VEGF. Efficacy was observed in in vivo models of most pae-
diatric tumours, including 4/5 Ewing’s sarcoma xenografts.45 In
paediatric phase I trial, the main toxicities were haematological
and cardiac for children previously treated with anthracyclins.46

Pazopanib inhibits VEGFR1-3, PDGFRa/b, c-KIT. Pazopanib
appeared active in paediatric in vivo tumour models, used as
single agent in Ewing’s sarcoma47 or combined with metro-
nomic topotecan in osteosarcoma.48 A phase II study of
pazopanib in bone sarcoma is ready to begin in Europe.

Inhibition of CellGrowthDepending on CellCycleRegulators

The CDK (cyclin-dependent kinase) inhibitor dinaciclib induces
in vitro osteosarcoma cell apoptosis.49 Phase I/II of rexin-G, a
pathotropic nanoparticle bearing acytocidalcyclin G1 construct
showed low toxicity in relapsed osteosarcoma, 2/3 SD and
7 months survival50 (Figure 2). Aurora A has a crucial role during
mitosis. Aurora A inhibitor, MLN8237, leads to prolonged
complete response in in vivo Ewing’s sarcoma and osteo-
sarcoma models.51 Two aurora A inhibitors, MLN8237
(NCT01154816) and AT9283 (NCT00985868 and
NCT01431664), are in paediatric phase I development. The
polo-like kinase 1 (PLK1) selective inhibitor, BI 2536 had
antiproliferative effects and induces mitotic death in

osteosarcoma cell lines52 (Figure 2). Mouse double minute 2
homologue (Mdm2/E3 ubiquitin-protein ligase Mdm2) is an
oncoprotein that negatively regulates p53, overexpressed in
p53 wild-type cancers. Mdm2 inhibitors such as nutlin-3,
activate p53 signalisation pathway leading to important tumour
regressions in osteosarcoma xenografts through apoptotsis53

(Figure 2). This effect is also seen in p53 wild-type Ewing’s
sarcoma and can be increased by either nuclear factor kappa B
inhibition through tumour necrosis factor-a (TNF-a),54 or histone
desacetylase (HDAC) inhibitors.55 An adult phase I study with an
oral MDM2 inhibitor (RO5503781) is ongoing in solid cancers
(NCT01462175) (Table 1).

Targeting of Cell Death Resistance

Resistance to apoptosis is a key element in tumour progression
and chemoresistance. The mechanisms involved increased
survival signals (growth factors/TK receptors, downstream
pathways), anti-apoptotic molecule overexpression (Bcl-2, Bcl-
XL and FAK in osteosarcoma), pro-apoptotic molecule under
expression (Bim in osteosarcoma), or resistance to cell death
receptors Fas/FasL (Fas ligand) or TRAIL (TNF-related apop-
tosis-inducing ligand) (Figure 2; Table 1).

1. The BCL-2 inhibitors navitoclax is developed in adult
refractory tumours in combination with docetaxel, with
acceptable toxicity and few responses (2 PR, 5 SD).56

2. TRAIL is a pro-apoptotic cytokine belonging to the TNF-a
superfamily that inhibits several EWS cell lines in vitro.57,58

Experimental data reported that TRAIL inhibits Ewing’s
sarcoma tumour growth in mice models, decreases osteo-
lysis, prolongs survival and decreases pulmonary metastatic
spread.59 Combination with Imatinib further increased TRAIL
effect on tumour growth and metastases in in vivo Ewing’s
sarcoma models.60 In a recent study, van Valen et al.61

Figure 2 Targeting of key factors associated to cell cycle, cell death resistance, autophagy and other metabolic activities. Genomic, transcriptional and functional analyses
carried out on bone sarcoma cells identified numerous targets, which constitute the basis for the development of sophisticated and promising therapies (in red). These targets are
involved in the key mechanisms controlling cell biology (cell cycle, apoptosis, replicative immortality, autophagy, histone deacetylation and acetylation, and so on).
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showed that anti-IGF1-R antibody sensitise Ewing’s sar-
coma cells to apoptosis induced by TRAIL. In addition, a
multi-center 2-part phase 1b/2 study is ongoing using
AMG655, the antibody agonist of TRAIL death receptor 5 in
combination with AMG479 (antibody agonist of IGF1-
R)(NCT00819169) (Table 1).

3. Inhibitors of apoptosis proteins (IAPs) inhibit caspase-
dependent apoptosis. Smac, a mitochondrial protein binds
to IAPs, impedes the formation of the protective complex
IAP/caspase and facilitates caspase degradation by the
proteasome. Smac mimetic LCL161 increases event free
survival of paediatric in vivo models, including 5/6
osteosarcoma and glioblastomas.62 LCL161 adult phase I
trial in solid tumours has just finished (NCT01098838) and a
combination trial with paclitaxel is ongoing (NCT01240655).
X-linked IAP antisense oligonucleotide (XIAP, ASO-
AEG35156) decreases XIAP in paediatric osteosarcoma,
rhabdomyosarcoma and Ewing’s sarcoma cell lines, and
sensitises osteosarcoma to doxorubicin, etoposide and
vincristin63 (Table 1).

4. Replicative immortality through telomerase activity restora-
tion in cancer cells induces resistance to cell death.
Telomerase activity is present in 85% of metastases
(100% in Ewing’s sarcoma and 75% in osteosarcoma),
but only in 12% of primary bone tumours and associates with
shortened telomeres and decreases patient survival.64

Telomerase is inhibited by suramine in osteosarcoma65

and imatinib mesylate, doxorubin or irradiation in Ewing’s
sarcoma.66–68

Other Exploitable Therapeutic Pathways

Targeting of autophagy. Autophagy, a cell survival program
implicated in tumourogenesis and chemoresistance,69 parti-
cipates through HMGB1 (high-mobility group protein B1) to
osteosarcoma resistance to doxorubicin, cisplatin and meth-
otrexate. HMGB1 inhibition by small interfering RNA restores
chemosensitivity.70 HMGB1 binds to Beclin1 that regulates the
Beclin1–PI3KC3 complex formation and favours autophagy.
The 2-O,3-O-disulfateheparine is a low weight anticoagulant
with anti-inflammatory activity but low anticoagulant activity.71

It might exert its anti-tumour action through inhibition of
heparinase (invasion), selectins (pulmonary metastatic spread)
and RAGE (receptor for advanced glycation end products),
which is no more able to bind to HMGB1 (pro-inflammatory and
pro-autophagy roles).

Hedgehog pathway inhibitors (SHH/PATCH/Smo/GLI).
Hedgehog signalling pathway has an important role in
growing organisms (embryogenesis, morphogenesis) and
is activated in osteosarcoma and Ewing’s sarcoma (GLI is
a EWS–FLI1 target).72,73 Its inhibition by cyclopamine
in osteosarcoma74 and arsenic trioxide, a GLI inhibitor in
Ewing’s sarcoma,73 limits tumour growth. Arsenic trioxide
inhibits the growth of chemotherapy-resistant osteosarcoma
cells through inducing apoptosis.75 A paediatric phase I study
with smoothen inhibitor LDE225 is ongoing (NCT01125800).
Itraconazole, another inhibitor of the Hedgehog pathway,
is a commonly used antifungal that inhibits cancer growth76

(Table 1).

HDAC inhibitors. HDAC and histone acetyl transferase (HAT)
are enzymes that catalyse histone deacetylation and acety-
lation, respectively, modifying chromatin access to tran-
scription factors and gene transcription. Two paediatric phases
I trials have been completed with two HDAC inhibitors (vor-
inostat and valproic acid).77,78 In osteosarcoma models, HDAC
inhibitors decrease DNA reparation ability,79 sensitise cells to
irradiation80 and doxorubicine,81 and decreases FLIP
expression, a caspase 8 negative regulator.82 Another HDAC
inhibitor, SNDX-275, given by nasal administration has a
preventive action against pulmonary metastases in murine
osteosarcoma model.83 But HDAC inhibitors are suspected to
exert negative effects in osteosarcoma through induced-Notch
expression and invasion, which might facilitate osteosarcoma
metastatic potential.84 In Ewing’s sarcoma cells, EWS–FLI1
represses HATand activates HDAC.85 HDAC inhibition restores
HATactivity, inhibits cell growth and induces apoptosis. Another
HDAC inhibitor (FK228) decreases EWS–FLI1 expression and
Ewing’s sarcoma proliferation and induces TRAIL-dependent
apoptosis.86 Acquired resistances to the cyclic tetrapeptide
HDAC inhibitor family (FK228) are mediated by the drug efflux P
glycoprotein and the MAPK pathway, and might be reverted by
verapamil in Ewing’s sarcoma,87 and MEK inhibitors in
osteosarcoma.88

Heat shock protein 90 (HSP90) inhibitors. HSP90 is a
chaperone protein implicated in numerous cancers, over-
expressed in 21/54 Ewing’s sarcoma patient samples.89 Sera
anti-HSP90 antibodies associate with osteosarcoma poor
response to chemotherapy.90 HSP90 inhibitors induce pro-
teasome-mediated degradation of many oncogenic proteins
involved in all hallmark characteristics of cancer. 17-AAG
induces apoptosis in vitro24 and osteosarcoma growth retar-
dation in vivo as single agent and in combination with cis-
platin,90 and restores efficacy of IGF1-R inhibitor and Imatinib in
Ewing’s sarcoma models.89 No objective response was
observed in two paediatric phase I trials (SD in 1/3 Ewing’s
sarcoma patients, 0/7 in osteosarcoma). However, acquired
resistance to 17-AAG is rapid,91 and new generations of HSP90
inhibitors might be more promising (adult phase I/II trials
ongoing) (Table 1).

c-Met inhibitors. c-Met belongs to the receptor tyrosine
kinases and is strongly involved in the control of mitosis, cell
motility and cell survival and consequently alterations (over-
expression, mutation and so on) of c-Met signalling induced by
its ligand, the hepatocyte growth factor lead to the proliferation,
invasiveness and metastasis of numerous cancer cell types
including osteosarcoma. hepatocyte growth factor receptor/c-
Met has been shown to be overexpressed and activated in
osteosarcoma cells.12,92 Very recently, it has been shown that
c-Met overexpression by primary culture of human bone-
derived cells drives the cell differentiation into osteosarcoma.93

The corresponding transformed cells exhibited both
mesenchymal and stemness markers and authors suggest that
c-Met initiates the transformation of bone cells by regulating
self-renewal of osteosarcoma cells (894). Overall, these data
identify c-Met as a potential target in osteosarcoma. Oral
inhibitor of c-Met (PF-2341066) showed promising clinical
responses in non-small-lung cancer and its efficacy has been
addressed in preclinical models of osteosarcoma.94 The results
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revealed that PF-2341066 inhibits the survival, proliferation,
invasiveness and clonogenicity of osteosarcoma cells. In
addition, this drug inhibits the in vivo tumour growth as well as
associated-tumour bone remodelling.94 Combined treatments
with c-Met has been also assessed and showed that inhibition
of c-Met pathway enhances chemosensitivity.95

Conclusion

The multiplicity of targets in primitive malignant bone tumours of
children and adolescents and the experience with anti-IGF1-R
antibodies suggest that therapeutic future in these tumours will
reside in the way of combining these therapies targeting
different characteristics of the malignant cells and their
environment. The development of therapies targeting founder
genetic abnormalities such as EWS-FLI in EW appears crucial.
More efforts remain necessary to understand biological pro-
cesses implicated in osteosarcoma oncogenesis. An increasing
number of new molecular therapies becoming available and the
rarity of these tumours also require developing relevant pre-
clinical models and new methodologies for therapeutic trials.
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