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Injury to nontargeted tissues in chemotherapy often complicates cancer treatment by limiting 

therapeutic dosages of anticancer drugs and by impairing the quality of life of patients during 

and after treatment. Oxidative stress, directly or indirectly caused by chemotherapeutics as 

exemplified by doxorubicin, is one of the underlying mechanisms of the toxicity of anticancer drugs 

in noncancerous tissues, including the heart and brain. A comprehensive understanding of the 

mechanisms of oxidative injury to normal tissue will be essential for the improvement of strategies 

to prevent or attenuate the toxicity of chemotherapeutic agents without compromising their 

chemotherapeutic value.
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Introduction

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) 
are generated in vivo from dioxygen (O

2
) and nitric oxide (NO), 

respectively. It is somewhat paradoxical that the reactive natures 
of both gases, which lies at the core of essential life processes, 
also engenders derivatives (i.e., certain ROS and RNS) that can 
be deleterious to life; such derivatives include superoxide radi-
cal (O

2
•-), hydrogen peroxide (H

2
O

2
), hydroxyl radical (HO•), 

alkoxyl/peroxyl radicals (RO•/ROO•), and peroxynitrite (ONOO-). 
The medical relevance of ROS and RNS is made further complex 
in that a great diversity of biophysical processes and conditions 
can support their production. For example, O

2
•- is primarily pro-

duced by incomplete reduction of O
2 
(1), whereas NO is generated 

from L-arginine via a nitric oxide synthase–catalyzed reaction (2). 
Many ROS/RNS are crucial signaling molecules, tightly regulated 
and essential to crosstalk mechanisms among multiple cellular 
pathways (3). In order to check the activities of ROS/RNS in vivo 

and maintain cellular redox conditions, antioxidant systems have 
evolved that consist of biological antioxidants (e.g., vitamin C, 
vitamin E, and glutathione) and antioxidant enzymes (e.g., super-
oxide dismutase, catalase, and glutathione peroxidase). When 
the generation of ROS/RNS exceeds cellular adaptive and repair 
capacities—a condition that is referred to as oxidative stress—bio-
logical molecules such as nucleic acids, proteins, and membrane 
phospholipids become damaged through oxidative reactions. 
Oxidative stress results in the failure of normal cellular functions 
and even cell death. 

The US Food and Drug Administration (FDA) has approved 
132 anticancer drugs (a full list is available at http://www.fda.gov/
cder/cancer/approved.htm). Fifty-six of these have been reported 
to induce oxidative stress, including the anthracyclines, cyclophos-
phamide, cisplatin, busulfan, mitomycin, fluorouracil, cytarabine, 
and bleomycin (Figure 1). Some chemotherapeutic agents, such as 
bleomycin (4), induce oxidative stress as a mechanism for killing 
cancer cells. However, certain chemotherapeutic agents, such as the 
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Figure 1. Anticancer drugs that cause oxidative stress. Cyclophosphamide and cisplatin are converted to reactive metabolites that cause DNA cross-linking 
and react with the thiol groups in enzymes and glutathione. Busulfan decreases glutathione levels. Mitomycin induces ROS generation through redox cycling of 
the quinone moiety. Cytarabine incorporates into DNA and acts as a chain terminator; following cytarabine-induced damage to DNA, ROS are generated in vivo. 
Bleomycin forms complexes with Fe2+ and O2 that break DNA strands and generate superoxide and hydroxyl radicals. In all, 56 of 132 FDA-approved anticancer 
drugs have been implicated in oxidative stress (as determined through Scinfinder Scholar using each drug name and the term “oxidative stress” as keywords). 
See text for details.
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anthracyclines (5–7), induce oxidative stress in nontargeted tissues 
and thereby lead to “normal tissue injury.” Although chemotherapy 
improves the survival rates of cancer patients, oxidative stress–
mediated impairment of normal tissues is a significant side effect 
and decreases the quality of life of patients. A better understanding 
of the mechanisms involved in oxidative injury to normal tissues is 
essential to the design of intervention strategies that will attenuate 
the toxicity of chemotherapeutic agents without compromising their 
anticancer efficacy.  

To address the problem of oxidative damage in normal tis-
sues exposed to chemotherapeutics, we have studied doxorubicin 
(DOX, also called adriamycin), a representative of the anthracy-
clines, which remain one of the most effective anticancer drug 
families in clinical use. Other anthracyclines used in clinical 
practice include daunorubicin, epirubicin, idarubicin, aclarubicin, 
pirarubicin, and mitoxantrone (Figure 2). DOX kills cancer cells 
through DNA intercalation and inhibition of topoisomerase II (8), 
but its side effects include oxidative stress–mediated injuries to 
heart (5), kidney (6), and brain (7). DOX nevertheless remains an 
important component in most chemotherapeutic regimens, owing 
to its efficacy in treating a broad spectrum of cancers. 

Although many tissues are susceptible to the unintended 
effects of chemotherapy, here we will focus on heart and brain. 
Because cardiomyocytes and neurons are post-mitotic cells, major 
insults that befall them are generally irreversible and thus can irre-
vocably affect the functions of the heart and brain. Cardiotoxicity is 
well recognized in chemotherapy (9), especially in patients treated 
with anthracyclines, which can cause the dose-dependent develop-
ment of dilated cardiomyopathy and congestive heart failure (10). 
Recent studies have revealed that brain tissue is similarly suscep-
tible to chemotherapeutic agents, despite suppositions of protec-
tion via the blood–brain barrier (BBB) (11). Persistent changes in 
cognitive function, including memory loss, distractibility, and dif-
ficulty in performing multiple tasks, have been observed in breast 
cancer survivors after treatment with chemotherapeutic agents, 
including DOX (11–13). The term “chemobrain” has been used to 
describe the cognitive decline associated with chemotherapy (14, 
15). Moreover, magnetic resonance imaging has revealed that che-
motherapy has an influence on the structures of the brain (16–18), 
which might be related to cognitive impairments. In addition, posi-
tron emission tomography has shown defects in brain function in 
breast cancer patients five to ten years after chemotherapy (19, 20). 
Although the molecular basis for “chemobrain” remains elusive, 
oxidative stress has been thought to play a mechanistic role (7, 11, 
21–23).
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Figure 2. Anthracyclines in current clinical use.  Doxorubicin and dauno-
rubicin are two prime anthracyclines used as anticancer drugs. Doxorubicin 
is used in treatment of breast cancer, aggressive lymphomas, childhood solid 
tumors, and soft tissue sarcomas, whereas daunorubicin is used to treat 
acute lymphoblastic or myeloblastic leukemias. Structural analogs of doxo-
rubicin and daunorubicin (i.e., epirubicin, pirarubicin, idarubicin, aclarubicin, 
and mitoxantrone) were developed in the search for chemotherapeutics with 
limited cardiotoxicity; the success of this search has been rather modest. See 
text for details.
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ROS/RNS Generation and Disturbance of 
Redox Status in Chemotherapy

Oxidative stress results from an imbalance between the generation 
of ROS/RNS and their removal by the cellular antioxidant sys-
tem. The heart and brain manifest distinct mechanisms of DOX-
induced ROS/RNS production. In heart, DOX-induced production 
of ROS/RNS involves the interplay of multiple processes, includ-
ing redox cycling of the quinone moiety of DOX, disturbance of 
iron metabolism, and DOX metabolites. In contrast, tumor necro-
sis factor-α (TNF-α) has been implicated in the generation of 
ROS/RNS in the brain (21).

Mechanisms of Toxicity in the Heart

The heart is rich in mitochondria, which occupy about forty per-
cent of the total intracellular volume of cardiomyocytes (24). DOX 
has a high affinity for cardiolipin, a negatively charged phospho-
lipid abundant in the mitochondrial inner membrane (25), leading 

to mitochondrial accumula-
tion of DOX (26). Under clini-
cally relevant plasma DOX 
concentrations of 0.5–1 µM, 
intramitochondrial concentra-
tions can reach approximately 
50–100 µM. At these rela-
tively high concentrations of 
DOX, the heart becomes a site 
of redox reactivity. Specifically, 
the quinone functionality of 
DOX is transformed, in the 
presence of NADH, into a 
semiquinone via one-electron 
reduction by complex I of the 
electron transport chain (27). 
The semiquinone form reacts 
with molecular oxygen to 
produce a superoxide radical 
(O

2
•-), whereby DOX returns 

to the quinone form. The 
cycling of DOX between qui-
none and semiquinone forms 
generates large amounts of 
O

2
•- (Figure 3), which further 

give rise to a variety of active 
ROS/RNS species, including 
H

2
O

2
, •OH, and ONOO- (28, 

29). In heart tissue, several 
endogenous reductases (30) 
and the endothelial isoform 
of nitric oxide synthase (31) 
can catalyze the redox cycling 
of DOX. 

DOX also interferes with normal metabolic reactions that 
involve iron, a redox-active transition metal, again leading to 
ROS generation (Figure 3). DOX semiquinone, O

2
•-, and their 

byproduct H
2
O

2
 can trigger the release of iron from ferritin, an 

important iron storage protein (10), as well as from cytoplasmic 
aconitase, which contains a [4Fe-4S] cluster. Loss of the [4Fe-4S] 
cluster converts cytoplasmic aconitase into iron regulatory protein 
(IRP)-1. IRP1 binds with high affinity to conserved iron-responsive 
elements (IRE) in the untranslated regions of transferrin receptor 
(TfR) and ferritin mRNAs, stabilizing TfR mRNA but destabilizing 
ferritin mRNA (32, 33). As a consequence, iron uptake exceeds 
iron sequestration, so that increased cellular levels of free iron lead 
to production of •OH via Fenton chemistry, contributing to oxida-
tive stress and cytotoxicity. 

Metabolic turnover of DOX per se is another factor leading to 
ROS generation. Aldoketo reductases convert the carbonyl group at 
C13 to a hydroxyl group, thereby conferring a secondary alcohol 
function upon DOX (Figure 3) (10). The secondary alcohol deriva-
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Figure 3. DOX-induced generation of ROS/RNS in heart.  Cleavage of the sugar residue and reduction of the carbonyl 
group at C13 produce DOX aglycone and doxorubicinol (DOXol), respectively. Redox cycling of DOX and its metabolites 
generates ROS including O2

•- and H2O2. ROS and DOXol can affect iron metabolism and lead to increased levels of cel-
lular free iron ions, which induce further ROS/RNS generation. 
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tive of DOX is effective in releasing iron from the [4Fe-4S] cluster 
of cytoplasmic aconitase (34, 35), resulting in further disturbance 
of iron metabolism and further oxidative stress (36). DOX can also 
be metabolized into its aglycone form, which results from cleavage 
of the sugar residue off the parent compound (37). The lipophilic 
aglycone metabolite of DOX has a higher membrane diffusion 
capacity than its parent compound and can accumulate in the 
mitochondrial inner membrane. Diversion of electrons from the 
respiration chain leads to ROS formation and deterioration of the 
functional integrity of the respiration chain. 

Mechanisms of Toxicity in the Brain

In comparison with the multiple mechanisms proposed for DOX-
induced ROS/RNS generation in the heart, much less is known 
about such mechanisms in the brain (11, 21, 22). It is generally 
believed that ATP-dependent transporters at the BBB prevent 
passage of DOX through the barrier (38), and indeed DOX has 
not been detected in the areas protected by the BBB, such as the 
cortex and the hippocampus (21, 39). In contrast, we have found 
increased levels of TNF-α in the cortex and the hippocampus of 
mice treated with DOX (21). Moreover, markers of oxidative stress, 
including protein carbonyl levels, protein-conjugated 4-hydroxy-
2-nonenal (4-HNE; a product of lipid peroxidation), and protein 
nitrotyrosine are elevated in the brains of DOX-treated mice (22). 
It is therefore likely that oxidative stress in the brains of these 
animals results from indirect effects of DOX and that TNF-α is a 
mediator of DOX-induced ROS/RNS. Administration of DOX has 
also been shown to increase circulating levels of TNF-α (7, 21, 40). 
Circulating TNF-α can pass the BBB (41) and activate glial cells 
to initiate local production of TNF-α (42), which in turn induces 
nitric oxide synthase, leading to the generation of RNS (Figure 4) 

(7). Furthermore, the role of nitric oxide synthase in RNS produc-
tion in the brain during DOX treatment is strongly supported by 
two independent investigations in rat models. In one study, dau-
norubicin, an analog of DOX (Figure 2), raises the level of nitric 
oxide synthase in the brain (43), whereas inhibition of nitric oxide 
synthase by aminoguanidine ameliorates DOX-induced oxidative 
stress in the brain (44). The role of circulating TNF-α in mediating 
ROS/RNS is supported by the fact that co-administration of anti-
TNF-α antibody with DOX completely prevents TNF-α elevation 
and DOX-induced brain injury (21). 

Cellular Modulation of Oxidative Stress

Cellular antioxidants and antioxidant enzymes play a vital role in 
scavenging ROS/RNS and maintaining a balanced cellular redox 
status. ROS/RNS that arise during chemotherapy consume cellular 
antioxidants and lead to oxidative modification and inactivation 
of antioxidant enzymes. This cascade of events pushes the cellular 
redox status towards the direction of oxidative stress.

Glutathione, a ubiquitous thiol-containing tripeptide, func-
tions directly as an antioxidant in vivo. Glutathione-dependent 
enzymes, such as glutathione peroxidase, glutathione reductase, 
and glutathione-S-transferase, utilize glutathione to neutralize ROS 
(45). Glutathione acts as a reductant to convert hydrogen peroxide 
into water

 
and to reduce lipid peroxides to their corresponding 

alcohols; in these reactions, two molecules of glutathione must 
combine to form a disulfide bond (i.e., GSSG), which is catalyzed 
by glutathione peroxidase. To complete this redox cycle, glutathi-
one reductase uses NADPH to catalyze the conversion of GSSG 
back into two molecules of glutathione. In addition, glutathione, by 
virtue of its nucleophilic thiol group, can conjugate directly with 
lipid oxidation products or xenobiotics to produce thioethers; these 
adduct reactions are catalyzed by glutathione-S-transferase and 
provide important mechanisms for the detoxification and excre-
tion of toxic substances. The ROS that are produced in response to 
chemotherapeutic agents such as DOX decrease cellular glutathione 
reserves (44) and thereby escalate oxidative stress (46, 47). DOX 
administration further leads to a dose-dependent decrease of gluta-
thione peroxidase activity in the heart (48) and glutathione-S-trans-
ferase activity in the brain (23); decreases in these enzyme activities 
presumably reflect mechanisms of oxidative stress. In brain tissue of 
DOX-treated mice, manganese superoxide dismutase (MnSOD), an 
essential mitochondrial antioxidant enzyme, has been found to be 
inhibited upon nitration (7). Tyr34 is vital for MnSOD activity, and 
its nitration impedes substrate binding (49). 

ATP-dependent transporter proteins such as multidrug 
resistance–associated proteins (MRPs) also play important roles 
in maintaining the cellular redox balance by transporting glu-
tathione-conjugated lipid oxidation products out of cells (50). 
We found, in the heart tissue of DOX-treated mice, that 4-HNE 
modifies and inhibits Mrp-1, thereby exacerbating DOX-induced 
oxidative stress (51). Moreover, levels of Mrp-1 are elevated in 

DOX Circulating TNF-α

Blood-brain barrier

Local TNF-α

Nitric oxide synthases

Oxidative stress

Figure 4. Proposed mechanism of DOX-induced oxidative stress in 
brain.  DOX leads to increased levels of circulating TNF-α, which can pass 
the blood-brain barrier and trigger local production of TNF-α in the brain. 
Increased levels of TNF-α may in turn induce the expression of nitric oxide 
synthases, leading to oxidative stress.
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the brains of DOX-treated mice (22). Given that MRPs, together 
with P-glycoprotein (i.e., MDR1), are intrinsically expressed at the 
BBB to regulate drug distribution and efflux (52), these findings 
prompt the intriguing question as to whether chemotherapy-based 
inactivation of ATP-dependent transporter proteins compromises 
the integrity of the BBB, leading to drug accumulation in the brain 
and thus contributing to further oxidative stress. 

Routes to Oxidative Damage of 
Nontargeted Tissues

DOX affects proteins at both the transcriptional and post-transla-
tional levels. Microarray analysis has shown that DOX can modu-
late the expression of cardiac proteins related to energy produc-
tion and metabolism, calcium regulation, cell growth and death, 
cytoskeletal function, cell adhesion, and signal transduction (53). 
Among the affected proteins, enzymes involved in bioenergetic 
and metabolic pathways are of particular importance, because the 
maintenance and functionality of the heart require great inputs of 
energy (53–55). Disruption of metabolic pathways that normally 
support energy production, energy transfer, and energy utilization 
directly contribute to heart injury. At the transcriptional level, 
DOX decreases the expression of phospholipase Cδ, a crucial 
enzyme for phosphoinositol signaling and calcium homeostasis 
(53). At the post-translational level, DOX-induced ROS can oxi-
dize a susceptible cysteine residue (i.e., Cys278) of mitochondrial 
creatine kinase, thereby inactivating this pivotal, energy-regulating 
enzyme (54). Oxidative modification has also been implicated in 
the inhibition of NADH dehydrogenase in the heart (27). Through 
an emerging redox proteomic approach that combines the power 
of two-dimensional electrophoresis and immunochemistry, pro-
teins with elevated oxidative modification markers, such as car-
bonyl levels, 4-HNE, and nitrotyrosine, have been identified (56). 
In a mouse model, redox proteomics showed that cardiac triose 
phosphate isomerase, β-enolase, and electron transfer flavopro-
tein-ubiquinone oxidoreductase (ETF-QO) become carbonylated 
after acute DOX treatment (55). Triose phosphate isomerase and 
β-enolase operate within the glycolytic pathway: the isomerase 
catalyzes the interconversion between glyceraldehyde-3-phosphate 
and dihydroxyacetone phosphate, and β-enolase catalyzes the 
conversion of 2-phosphoglycerate to phosphoenolpyruvate. ETF-
QO is an iron–sulfur ([4Fe-4S]) flavoprotein, located at the inner 
mitochondrial membrane, that catalyzes electron transfer from 
ETF to co-enzyme Q, a process crucial to the metabolic oxidation 
of certain fatty acids and amino acids. Consequently, the pro-
teomic identification of cardiac proteins that are inactivated fol-
lowing DOX treatment (55) suggests that ATP production would 
be compromised in heart, a suggestion that is indeed consistent 
with observed effects of DOX.

At the subcellular level, mitochondria are the main tar-
gets of DOX-induced oxidative stress. Electron micrographs 
clearly demonstrate that DOX causes profound damage to the 

organelle, including mitochondrial vacuolization, mitochondrial 
degeneration, and disruption of the mitochondrial membrane. 
Mitochondrial DNA (mtDNA) is also an important target for oxi-
dative stress. The circular molecule of mtDNA within the human 
organelle consists of 16,569 base pairs (57) and encodes two 
rRNAs, twenty-two tRNAs, and thirteen polypeptides, all of which 
are essential to oxidative phosphorylation (58). Compared with 
nuclear DNA (nDNA), mtDNA is more susceptible to oxidative 
damage, owing to its proximity to the site of ROS generation, its 
lack of introns and histones, and the limited DNA repair capacities 
in mitochondria (59). Consequently, the mutation rate of mam-
malian mtDNA is ten- to seventeenfold higher than that of nDNA 
(60). In the heart, DOX-induced oxidative stress causes forma-
tion of 8-hydroxydeoxyguanosine (61) and mtDNA deletions (62, 
63); significantly, levels of 8-hydroxydeoxyguanosine persist after 
termination of DOX treatment (64). The heightened, oxidation-
sensitive mutability of mtDNA has obvious implications for cel-
lular energy production. Upon accumulation of insults to mtDNA, 
cellular capacities for energy production cannot meet the constant 
physical demands placed on the heart, and cardiac hypertrophy 
and heart failure ensue (65). In the brain, there is no direct evi-
dence of mtDNA damage in DOX treatment, but research into 
this question has only just begun (7, 21). Intriguingly, age-related 
neurodegenerative diseases such as Parkinson disease and amyo-
trophic lateral sclerosis are characterized by mtDNA oxidative 
damage and neuronal dysfunction (66). It is tempting to speculate 
that mtDNA oxidative damage might play a vital role in the cyto-
toxicity of DOX in the brain. 

Protection against Chemotherapy-Induced 
Oxidative Damage

Total cumulative dose, rate of administration, duration of chemo-
therapy, and concomitant use of other cardiotoxic drugs are well-
recognized risk factors for DOX cardiotoxicity (67). Several strate-
gies have been applied to mitigate the side effects of DOX. The 
maximum cumulative dose of DOX is 450–550 mg/m2 (68); there 
is some evidence that slow (i.e., over 48 or 96 hours) continuous 
infusion of DOX may be less cardiotoxic in adults (69) [although 
not in children (70)]. Otherwise, intensive research has shown only 
moderate success in finding analogs of DOX that have equivalent 
anticancer activity but less toxicity. Among DOX analogs, epirubi-
cin has a higher cumulative dose than DOX, but its activity against 
breast cancer is lower (71, 72); idarubicin is a more potent antican-
cer drug, but its cardiotoxicity is no less than DOX (73, 74); mito-
xantrone also has cardiotoxicity similar to DOX. These analogs still 
manifest toxicity in brain tissue (75). (See Figure 2 for structures.)

Insights into the key steps mediating DOX-induced oxida-
tive stress have suggested mechanism-based strategies to prevent 
normal tissue damage (Figure 5). One strategy is to disrupt the 
ROS propagation chain. Dexrazoxane (DRZ), an iron chelator, has 
been cooperatively used with DOX to chelate the free iron ions 
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released by DOX and its metabolites, and thus to inhibit Fe2+-
related ROS generation without interfering with the anticancer 
potency of DOX (76). DRZ has demonstrated efficacy in amelio-
rating both acute and chronic DOX cardiotoxicity in mammalian 
models including mouse, dog, swine (77), and in human cancer 
patients (76). A recent report shows, however, that DRZ may be 
risky to use with certain cancers (78), demonstrating the necessity 
for novel intervention methods. The discovery that TNF-α medi-
ates the toxicity of DOX in the brain suggests that an anti-TNF-α 
antibody could be a potential modality to quench oxidative stress 
in the brain, as recently demonstrated by the preliminary success 
of the proof-of-concept study in a mouse model (21). In addition, 
the insight that isoforms of nitric oxide synthase may be involved 
in RNS production and oxidative stress in the brain (7, 79, 80) 
suggests that selective inhibition of these enzyme activities could 
be therapeutic (44).

The efficacy of antioxidant enzymes to reduce DOX-induced 
cardiac injuries has been demonstrated in transgenic mice that 
overexpress MnSOD, catalase, metallothionein, or thioredoxin-1 
(81–84). These valuable transgenic animal models clearly warrant 
further characterization and may reveal possible mechanisms by 
which these antioxidant enzymes protect the brain from DOX tox-
icity. Intervention strategies may include direct use of antioxidant 
enzyme mimetics. A cell-permeable SOD mimetic (i.e., MnTBAP) 
and a glutathione peroxidase mimetic (i.e., Ebselen) have been 
shown to protect cardiomyocytes from DOX-induced toxicity (85). 

Co-administration of antioxidants or antioxidant precursors 
is another way to diminish oxidative stress by direct removal of 
DOX-induced ROS. Recently, grape seed proanthocyaniclins, a 
dietary antioxidant supplement, have been shown to enhance the 
anti-tumor activity of DOX and ameliorate DOX-induced myo-

cardial oxidative stress in tumor-bearing mice (86). Pretreatment 
of mice with gamma-glutamyl-cysteine ethyl ester, a precursor of 
glutathione, increases brain glutathione levels and significantly 
decreases glutathione-S-transferase–facilitated protein oxidation 
and lipid peroxidation (23). These results demonstrate the feasibil-
ity of co-administration of antioxidants as a strategy to prevent 
nontargeted tissues from DOX-induced oxidative stress.

Summary

Oxidative stress is one mechanism by which many chemothera-
peutic agents kill cancer cells. As a side effect, however, these 
chemotherapeutic agents can also place nontargeted (i.e., noncan-
cerous) tissues under conditions of oxidative stress and thereby 
undermine the health of organs such as the heart and brain. Such 
damage not only limits the effective dosage of chemotherapeutics, 
but also compromises the quality of life of cancer patients after 
chemotherapy. Chemotherapy-induced ROS/RNS species [and 
their concomitant oxidative damage to proteins (including anti-
oxidant and energy-generating enzymes), lipids, nucleic acids, and 
larger cellular components (e.g., membranes and mitochondria)] 
are prime suspects in the toxic side effects of acute or chronic 
chemotherapeutic treatment. Intensive investigations to pursue 
the relationship between oxidative stress–generating anticancer 
drugs and damage to nontargeted tissues are greatly benefiting 
from modern technologies, including proteomic techniques. Novel 
intervention strategies to mitigate the potential side effect of che-
motherapeutics on normal tissues are increasingly relying on our 
mechanistic insights into the roles of chemotherapeutics in pro-
moting cellular oxidative stress.
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