Decline in positivity rates among HIV-exposed infants with changes in prevention of mother-to-child transmission antiretroviral regimens in Nigeria: Evidence from 7 years of field implementation

Hadiza Khamofu, Edward A. Oladele, Uche Ralph-Opara, Titi Badru, Oluwasanmi Adedokun, Mariya Saleh, McPaul Okoye¹, Olufunsho Adebayo², Kwasi Torpey

FHI 360, ¹United States Agency for International Development (USAID), Abuja, Nigeria, ²FHI 360, Pretoria, South Africa

ABSTRACT

Objective: Demonstrate if the introduction of more and more efficacious antiretroviral (ARV) combinations for prevention of mother-to-child transmission (PMTCT) over time translated into a declining HIV-infection among HIV-exposed infants. Methods: This was a retrospective review of routinely collected PMTCT service data from 2008 to 2014 in 682 secondary and tertiary health facilities across Nigeria. The ARV regimen was measured by the proportions of different ARV regimens received by HIV-positive pregnant women each year and the HIV-infection among infants was determined by the rate of HIV-positive polymerase chain reaction tests each year. The District Health Information Software (DHIS) was used to extract data from health facilities. The same DHIS was used to aggregate and analyze data. Results: Maternal HIV positivity rates varied from 4.1% in 2008, 2.9% in 2011, and 3.2% in 2012, then declined steadily to 1.9% in 2014. The total number of pregnant women who tested positive for HIV and received different ARV regimen for PMTCT during the period (2008–2014) was 63,774; ranging from 7506 in 2008 to 10,388 in 2014. Uptake of single dose nevirapine by the positive pregnant women was 34.4%, 41.6%, and 45.9% in 2008, 2009, and 2010, respectively. HIV positive pregnant women on triple ARVs (prophylaxis or treatment) increased from 22% in 2008 to 99% in 2014. Infant HIV positivity rates showed a steady decline over the years, from 38% in 2008 to 6% in 2014 (P < 0.001). Conclusions: We demonstrated the declining trend of HIV-infection among HIV-exposed infant in Nigeria as more and more efficacious ARV regimens were available for HIV-positive pregnant women. We conclude that if current efforts were sustained and coverage widened, an alignment of the country’s PMTCT program with the best available scientific evidence could lead to the elimination of mother to child transmission.

Key words: Child, early infant diagnosis, healthcare, HIV transmission, Nigeria, pregnancy, retrospective studies

INTRODUCTION

The risk of mother to child transmission of HIV (MTCT) in Nigeria is high due to a combination of factors which include; a high fertility rate of 5.5%;¹ HIV prevalence of 4.1% among women attending antenatal clinic (ANC);² and low coverage of prevention of mother-to-child transmission (PMTCT) services (30% as at end of 2013).³ The 51,000 new HIV infections recorded in Nigeria in 2013 accounted for one-quarter of all new HIV infections among children in the 21 Global Plan priority countries.⁴ MTCT is responsible for the majority of these HIV infections among children.⁵ Without antiretroviral drugs (ARVs), the rate of MTCT is estimated to be...
Evidence from controlled studies has shown that the use of ARVs and other interventions have the potential to reduce pediatric HIV infections to <2%.[8,9] This has created the optimism that MTCT can be eliminated. Accordingly, PMTCT programs have provided ARVs to an increasing number of HIV-infected pregnant women. In Nigeria for example, the number of health facilities providing PMTCT services increased from only 6 in 2004 to 6000 in 2014.

As countries scaled up PMTCT services, scientific evidence was also evolving leading to changes in recommended ARVs for PMTCT to more efficacious regimens. Nigeria’s PMTCT program has evolved over the years with changes in guideline recommendations, including cut-off for antiretroviral therapy (ART) eligibility and transition from monotherapy (single dose nevirapine [sdNVP]) to the use of more efficacious triple ARVs for PMTCT.[10‑12] These changes are summarized in Table 1.

Although clinical trials have been and continue to be very helpful in advancing practice,[13‑23] they, however, offer only limited insight into what may happen in the program implementation setting where events are subject to much more varying “un-controlled” conditions. A number of authors have described PMTCT outcomes in nontrial settings.[24‑28] The scope of these publications vary from single hospitals to country level evaluations. Some have used models applied to local data to estimate impact.[29]

We found a study that evaluated the impact of changes of national guidelines on PMTCT outcomes in a single South African clinic.[30] This is a step in the right direction. Nigeria has only recently in December 2014, launched a new set of integrated national guidelines for HIV prevention, treatment, and care. We are yet to come across any publication from Nigeria that relates infant positivity rates to changes in ARV regimen over time. It is, therefore, imperative to evaluate how PMTCT program has performed with regards to changes in ARV regimen and accompanying MTCT rates.

We conducted a desk review of PMTCT program implementation data from 2008 to 2014. The objective was to demonstrate changes in HIV transmission rates among exposed infants as the ARV regimen changed over time.

METHODS

This was a retrospective review of routinely collected PMTCT program implementation data collected using the District Health Information Software (DHIS), from 2008 to 2014.

Study setting

Data used for this review were collected from ANCs in 682 health facilities as part of PMTCT projects funded by the President’s Emergency Program for AIDS Relief, through the United States Agency for International Development (USAID) Nigeria, and implemented by FHI360 across Nigeria’s 36 states and the Federal Capital Territory. The period covered was from 2008 to 2011 through the Global HIV/AIDS Initiative in Nigeria (GHAIN) project; and 2011–2014 through the Strengthening Integrated Delivery of HIV/AIDS Services (SIDHAS) project.

PMTCT program implementation in all project supported health facilities were based on the national PMTCT guidelines and protocols. The technical details of these PMTCT interventions have varied over the years as the guidelines changed.[10‑12] Key changes and current interventions are summarized in Table 1.

National data collection tools/registers are used to document information from HIV-positive pregnant women and their babies: General ANC, PMTCT HIV testing and counseling, PMTCT ARV, maternal follow-up, delivery, and child follow-up registers. The delivery register is used to collect information from all HIV-positive pregnant women during labor and immediately after delivery while the child follow-up register is used to document information during the follow-up of HIV-exposed infants. The national PMTCT monthly summary form (MSF) aggregates all the key PMTCT indicators. All information on the PMTCT MSF is transcribed into the DHIS on a monthly basis.

Data source and data analysis

We used routine monitoring and evaluation aggregate data from the DHIS reported through 184 of 185 facilities supported by the GHAIN project from 2008 to 2011; and 498 of 2593 facilities supported by the SIDHAS project from 2011 to 2014. The DHIS PMTCT data set were complete for all of the facilities included in this review. Indicators of interest were a percentage...
Table 1: Summary of key changes in national guidelines between 2005 and 2014 \(^{10,11}\)

<table>
<thead>
<tr>
<th>PMTCT service</th>
<th>2005</th>
<th>2007</th>
<th>2010</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antenatal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testing and counseling for HIV</td>
<td>Opt-out</td>
<td>PITC</td>
<td>PITC</td>
<td>PITC</td>
</tr>
<tr>
<td>HAART eligibility assessment</td>
<td>Stage IV disease regardless of CD4</td>
<td><200</td>
<td>CD4 <350 irrespective of clinical stage</td>
<td><500 irrespective of clinical stage</td>
</tr>
<tr>
<td></td>
<td>Stage III disease with CD4 <350</td>
<td></td>
<td>Stages III and IV disease irrespective of CD4 count</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stages I or II with CD4 <200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stage II with TLC <1200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provision of antenatal ARV prophylaxis as eligible</td>
<td>ZDV from 28 weeks, or ZDV + 3TC from week 34-36</td>
<td>ZDV from 28 weeks or ZDV + 3TC from week 34-36</td>
<td>Option A: ZDV from 14 weeks</td>
<td>Option B: Triple ARV</td>
</tr>
<tr>
<td>Provision of antenatal HAART as eligible</td>
<td>Delay ARV use in first trimester</td>
<td>Triple regimen (after the first trimester). ZDV preferred NRTI</td>
<td>Triple regimen (after the first trimester)</td>
<td>Triple (irrespective of GA). TDF preferred NRTI and EFV preferred NNRTI</td>
</tr>
<tr>
<td>Infant feeding counseling and support</td>
<td>Recommended</td>
<td>Recommended</td>
<td>Recommended</td>
<td>Recommended</td>
</tr>
<tr>
<td>Subsequent retesting for those who initially test negative</td>
<td>Recommended</td>
<td>Recommended</td>
<td>Recommended</td>
<td>Recommended</td>
</tr>
<tr>
<td>Family planning and reproductive health services</td>
<td>Recommended</td>
<td>Recommended</td>
<td>Recommended</td>
<td>Recommended</td>
</tr>
<tr>
<td>Intrapartum (labor and delivery)</td>
<td>Recommended</td>
<td>Recommended</td>
<td>Recommended</td>
<td>Recommended</td>
</tr>
<tr>
<td>Encouragement of facility-based delivery and delivery with a skilled attendant</td>
<td>Recommended - offer routine HIV testing in early labor with the right to opt out - for unbooked clients and women of unaware of their status</td>
<td>Recommended - offer routine HIV testing in early labor with the right to opt out - for unbooked clients and women unaware of their status</td>
<td>Recommended - testing for all women of unknown status and those who tested negative during pregnancy</td>
<td>Recommended - for all women of unknown HIV status including those who tested negative during pregnancy</td>
</tr>
<tr>
<td>Safe delivery techniques</td>
<td>Recommended - offer routine HIV testing in early labor with the right to opt out - for unbooked clients and women of unaware of their status</td>
<td>Recommended - offer routine HIV testing in early labor with the right to opt out - for unbooked clients and women unaware of their status</td>
<td>Recommended - testing for all women of unknown status and those who tested negative during pregnancy</td>
<td>Recommended - for all women of unknown HIV status including those who tested negative during pregnancy</td>
</tr>
<tr>
<td>PITC for HIV (intrapartum)</td>
<td>Continue ZDV during labor, plus single-dose NVP at onset of labor</td>
<td>sdNVP + ZDV + 3TC at onset of labor</td>
<td>Continuation of HAART as eligible</td>
<td>Continuation of triple ARV prophylaxis or HAART as eligible</td>
</tr>
<tr>
<td>Intrapartum ARV prophylaxis or continuation of HAART as eligible</td>
<td>Recommended</td>
<td>Recommended</td>
<td>Recommended</td>
<td>Recommended</td>
</tr>
<tr>
<td>Postpartum/postnatal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maternal postpartum ARV prophylaxis or continuation of HAART as eligible</td>
<td>NVP + 2 NRTIs (ZDV preferred)</td>
<td>ZDV + 3TC for 7 days postpartum</td>
<td>Triple regimen (ZDV/TDF-based) till 1 week after cessation of breastfeeding or lifelong continuation of HAART if eligible</td>
<td>Triple regimen TDF based preferred) till 1 week after cessation of breastfeeding or lifelong continuation of HAART if eligible</td>
</tr>
<tr>
<td>PITC for HIV (postpartum)</td>
<td>VCT (not mandatory/optional)</td>
<td>PITC - Recommended</td>
<td>PITC - Recommended</td>
<td>PITC - Recommended</td>
</tr>
<tr>
<td>Infant cotrimoxazole prophylaxis</td>
<td>Recommended for 6 weeks to 18 months of age. Discontinued if infants tests negative at 18 months</td>
<td>Recommended from 6 weeks to 18 months of age. Discontinued if infants tests negative at 18 months</td>
<td>Recommended from 6 weeks till HIV status is determined - if positive, continue, if negative, stop cotrim</td>
<td>Recommended from 6 weeks till HIV status is determined - if positive, continue, if negative, stop cotrim</td>
</tr>
</tbody>
</table>

Contd...
Khamofu, et al.: Declining HIV positivity rates among HEIs

of pregnant women who received various ARV regimens and infant HIV positivity rates. Chi-square test was used to compare infant positivity rates across the review period. A $P < 0.05$ was considered statistically significant.

Ethical considerations

All data were collected at an aggregate level and do not include any identifiers, and the data used were those collected routinely as part of PMTCT service delivery in all the study focus health facilities.

RESULTS

The data we reviewed indicated that the total number of pregnant women who tested positive for HIV and received different ARV regimen for PMTCT during the period (2008–2014) were 63,774; ranging from 7506 in 2008 to 10,388 in 2014. Uptake of sdNVP by the positive pregnant women was 34.4%, 41.6%, and 45.9% in 2008, 2009, and 2010, respectively. In 2014 however, of all the positive pregnant women that received ARVs, 49% received triple ARV prophylaxis, whereas 50% received ART. Uptake of option A ranged from 9.0% in 2011 to 0.6% in 2014. HIV-positive pregnant women on triple ARVs (prophylaxis or treatment) increased from 22% in 2008 to 99% in 2014. Infant HIV positivity rates showed a steady decline over the years, from 38% in 2008 to 6% in 2014 ($P < 0.001$).

DISCUSSION

We observed a steady decline in the HIV positivity rates among exposed infants across our program as

Table 1: Contd...

<table>
<thead>
<tr>
<th>PMTCT service</th>
<th>2005</th>
<th>2007</th>
<th>Guideline</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infant ARV</td>
<td>Single-dose NVP as soon as possible after birth, plus ZDV for 6 weeks</td>
<td>Single dose NVP as soon as possible after birth plus ZDV for 6 weeks</td>
<td>NVP suspension recommended from birth to 6 weeks</td>
<td>NVP suspension recommended from birth to 6 weeks</td>
</tr>
<tr>
<td>EID</td>
<td>DNA PCR done 6-8 weeks after birth</td>
<td>DNA PCR from 6 weeks after birth</td>
<td>Recommended from 4-6 weeks after birth (for first DNA PCR) and 6 weeks after cessation of breastfeeding (for second DNA PCR)</td>
<td>Recommended from 4-6 weeks after birth (for first DNA PCR) and 6 weeks after cessation of breastfeeding (for second DNA PCR)</td>
</tr>
<tr>
<td>HIV rapid test to determine final HIV status of infant</td>
<td>Recommended after 18 months and at least 3 months after breastfeeding</td>
<td>Recommended after 18 months and at least 3 months after breastfeeding</td>
<td>Recommended at 12-18 months of age</td>
<td>Recommended at 12-18 months of age</td>
</tr>
<tr>
<td>Infant feeding support and adherence</td>
<td>EBF/replacement feeding for 6 months. Abrupt cessation thereafter</td>
<td>EBF/replacement feeding for 6 months. Abrupt cessation thereafter</td>
<td>EBF for 6 months. Complimentary feeding from 6 months. Cessation of all breastfeeding at 12 months. ARV cover by mother or infant for duration of breastfeeding till 1 week after breastfeeding has ceased</td>
<td>EBF for 6 months. Complimentary feeding from 6 months. Cessation of all breastfeeding at 12 months. ARV cover by mother or infant for duration of breastfeeding till 1 week after breastfeeding has ceased</td>
</tr>
<tr>
<td>Links to care, treatment, and support</td>
<td>Recommended as 4th prong of PMTCT</td>
</tr>
<tr>
<td>Family planning and reproductive health services (postpartum)</td>
<td>Recommended</td>
<td>Recommended</td>
<td>Recommended</td>
<td>Recommended</td>
</tr>
<tr>
<td>Community services</td>
<td>Recommended-peer support and stigma reduction</td>
</tr>
</tbody>
</table>

the country transitioned to more efficacious PMTCT ARV regimens. We also observed a steady but less steep decline in maternal HIV positivity rates within the same timeframe. The study design may not allow for direct attributions as in a controlled trial, but using data from early infant diagnosis is one of the five recommended approaches to evaluating the impact of national PMTCT programs.\[33\] Given the multifactorial influences that are present in everyday settings, our data show that changes in regimen coincide with a decline in positivity rates among HIV-exposed infants at the program level.

The rate of new infections among infants when considered at the population level, can be influenced by the four prongs of PMTCT described by the United Nations and included in the Nigeria national guidelines.\[11,32\] These four prongs are: (1) Primary prevention of HIV infection in women of reproductive age group and their partners; (2) prevention of unintended pregnancies among HIV-positive women; (3) prevention of HIV transmission from HIV-infected mothers to their infants; and (4) care and support for HIV-infected mothers, their infants and family members.\[11\] It is estimated that achieving the targets for prongs 1 and 2 would contribute a 13% reduction in new infant infections. Implementing prong 3 with more effective ARV prophylaxis or treatment would contribute an additional 60% reduction, with a further 6% decrease resulting from limiting breastfeeding to 12 months.\[33\] When the group in focus is, however, HIV-exposed infants as considered in this paper, the positivity rates are mainly influenced by prong 3.

At a population level, the rate of decline in new infections in Nigeria is not keeping up with the rest of the world. The number of new HIV infections among children in Nigeria has declined by only 19% since 2009 compared to 50% or more in other African countries such as Botswana, Ethiopia, Ghana, Malawi, Mozambique, Namibia, South Africa, and Zimbabwe.\[3\] This may be due to the time lag in adopting new guidelines as well as the limited coverage of interventions. The latter possibly being a stronger factor.

Our finding of declining maternal infections in Nigeria corroborates findings in national surveys and reports from other authors.\[2,34,35\] This decline in maternal infections will ultimately contribute to a population level overall decline in new pediatric HIV infections. Successes in prongs 1 and 2 as described earlier may be contributory.\[35,36\]

While changes in regimen may not be the only varying factor that has impacted the declining infant positivity rates described in this paper, we opine that...
it lies in the prong – prong 3 – that has witnessed the most remarkable changes during the period under consideration. The 6% positivity among the HIV-exposed babies in 2014, is a clear indication that the goal of elimination of MTCT of HIV is achievable in Nigeria. However, challenges with low ANC attendance and hospital delivery\(^1\) must be addressed to close the gaps created by several missed opportunities within the PMTCT continuum.

A review of the 32% decline of all new infections between 2005 and 2013 reported by United Nations Programme on HIV/AIDS shows that decline in new pediatric HIV infections were 63% while adult infections have only declined by 23%.\(^1\) This supports data presented here and presents real hope that if current efforts were sustained and coverage widened, an alignment of the country’s PMTCT program with the best available scientific evidence could lead to real progress.

CONCLUSIONS

We conclude that the evidence here discussed shows that while progress may be slow and challenges a myriad, the country is moving in the right direction with her PMTCT program. The country must therefore not rest on its oars but continue to advance its PMTCT program as well as align with available best scientific evidence.

Acknowledgment

This paper is based on data from projects implemented by FHI360 and funded by the United States President’s Emergency Plan for AIDS Relief through the USAID under Cooperative Agreement No. 620-A-00-04-00-122-00 (GHAIN) and Cooperative Agreement AID-620-A-00002 (SIDHAS).

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

“Quick Response Code” link for full text articles

The journal issue has a unique new feature for reaching to the journal’s website without typing a single letter. Each article on its first page has a “Quick Response Code”. Using any mobile or other hand-held device with camera and GPRS/other internet source, one can reach to the full text of that particular article on the journal’s website. Start a QR-code reading software (see list of free applications from http://tinyurl.com/yzh2tc) and point the camera to the QR-code printed in the journal. It will automatically take you to the HTML full text of that article. One can also use a desktop or laptop with web camera for similar functionality. See http://tinyurl.com/2bw7fn3 or http://tinyurl.com/3ysr3me for the free applications.