INTERNATIONAL SYMPOSIUM ON “GENOMICS IN HEALTH AND DISEASE”
&
40TH ANNUAL CONFERENCE OF INDIAN SOCIETY OF HUMAN GENETICS
28TH TO 30TH JANUARY 2015, NEHRU CENTRE, MUMBAI
ORGANIZED BY NATIONAL INSTITUTE OF IMMUNOHAEMATOLOGY (ICMR), MUMBAI

The Scientific Programme

Day 1: 28th January 2015 (Main Auditorium)

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.00 am to 10.00 am</td>
<td>Registration</td>
</tr>
<tr>
<td>10.00 am to 10.10 am</td>
<td>Welcome Address: Dr K Ghosh, Chairman, Organizing Committee</td>
</tr>
<tr>
<td>Chairpersons: Prof Partha Majumder, Dr K Ghosh</td>
<td></td>
</tr>
<tr>
<td>10.15 am to 11.00 am</td>
<td>Key Note Address: Prof Stylianos E Antonarakis, Switzerland Transcriptome dysregulation and single cell genomics in Down syndrome</td>
</tr>
<tr>
<td>11.00 am to 11.30 am</td>
<td>Break for Tea/Coffee</td>
</tr>
<tr>
<td>11.30 am to 12.15 pm</td>
<td>Dr L D Sanghvi Oration</td>
</tr>
<tr>
<td>12.15 pm to 1.00 pm</td>
<td>Plenary Session-I</td>
</tr>
<tr>
<td>Chairpersons: Dr Dipika Mohanty, Dr S V Chiplunkar</td>
<td></td>
</tr>
<tr>
<td>12.15 pm to 12.35 pm</td>
<td>Cancer genetics including Circulating Tumor Cells - Dr Purvish Parikh, Mumbai</td>
</tr>
<tr>
<td>12.35 pm to 12.55 pm</td>
<td>Genetics of complex diseases : From genome to epi-genome, a new perspective for understanding complex diseases - Dr Sanjeev Galande, Pune</td>
</tr>
<tr>
<td>1.00 pm to 2.00 pm</td>
<td>Lunch and viewing the posters</td>
</tr>
<tr>
<td>2.00 pm to 4.00 pm</td>
<td>Young Scientist Award Presentation (Y1 – Y8), Chairpersons: Dr. K. Thangaraj, Dr. Q. Annie Hasan</td>
</tr>
<tr>
<td>4.00 pm to 4.30 pm</td>
<td>Break for Tea/Coffee and viewing the Posters</td>
</tr>
<tr>
<td>4.30 pm to 6.30 pm</td>
<td>Plenary Session-II</td>
</tr>
<tr>
<td>Chairpersons: Prof S. E. Antonarakis, Prof N K Mehra</td>
<td></td>
</tr>
<tr>
<td>4.30 pm to 4.55 pm</td>
<td>Structure and Evolution of Genes of the innate immune system - Prof Partha Majumder, Kolkata</td>
</tr>
<tr>
<td>4.55 pm to 5.20 pm</td>
<td>Post Genomics era: MHC is where the action is? - Prof N K Mehra, New Delhi</td>
</tr>
<tr>
<td>5.20 pm to 5.45 pm</td>
<td>Exome sequencing reveals new genes involved in genitourinary development - Prof Ken McElreavey, France</td>
</tr>
<tr>
<td>5.45 pm to 6.10 pm</td>
<td>Hereditary Cancers in South Asians: Bench to Bedside - Dr Rajiv Sarin, Mumbai</td>
</tr>
<tr>
<td>6.15 pm to 7.00 pm</td>
<td>Poster Presentation (P1 to P60)</td>
</tr>
</tbody>
</table>

Inauguration

7.00 pm to 8.00 pm | Dr Vishwa Mohan Katoch, Secretary DHR & DG, ICMR |
8.00 pm to 10.00 pm | Dinner |

Day 2: 29th January 2015 (Hall A)

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.00 am to 9.30 am</td>
<td>Registration</td>
</tr>
<tr>
<td>9.30 am to 11.00 am</td>
<td>Session 1: Cancer Genetics</td>
</tr>
<tr>
<td>Chairpersons: Dr P S Chauhan, Dr Farah Jijina</td>
<td></td>
</tr>
<tr>
<td>9.30 am to 9.50 am</td>
<td>Is Cytogenetics of hematological malignancies still relevant in the genomic era? - Prof Susan Mathew, USA</td>
</tr>
<tr>
<td>9.50 am to 10.10 am</td>
<td>Clinical Applications of Molecular Genetics in Bone and Soft Tissue Neoplasia - Prof Meera Hameed, USA</td>
</tr>
<tr>
<td>10.10 am to 10.30 am</td>
<td>Translating Cancer Genomics to Medicine - Dr Amit Dutt, Mumbai</td>
</tr>
<tr>
<td>10.30 am to 10.50 am</td>
<td>Cytogenetics and molecular profiling in Multiple Myeloma - Dr Pratibha Amare, Mumbai</td>
</tr>
<tr>
<td>11.00 am to 11.30 am</td>
<td>Break for Tea/Coffee and viewing the Posters</td>
</tr>
<tr>
<td>11.30 am to 1.00 pm</td>
<td>Session III: Inborn Errors of Metabolism</td>
</tr>
<tr>
<td>Chairpersons: Prof A Jyothy, Dr Jayesh Sheth</td>
<td></td>
</tr>
<tr>
<td>11.30 am to 11.50 am</td>
<td>Clinical Practice in NGS Era - Prof I C Verma, New Delhi</td>
</tr>
<tr>
<td>11.50 am to 12.10 pm</td>
<td>Mitochondrial Disease Diagnosis and Management - Dr Virginia Kimonis, USA</td>
</tr>
<tr>
<td>12.10 pm to 12.30 pm</td>
<td>Enzyme replacement therapy for lysosomal storage disorders - Dr Mamta Muranjan, Mumbai</td>
</tr>
<tr>
<td>12.30 pm to 12.50 pm</td>
<td>Screening & Diagnosis of IEM by Mass-Spectrometry - 15 Years of MILS Experience - Dr Usha Dave, Mumbai</td>
</tr>
<tr>
<td>1.00 pm to 2.00 pm</td>
<td>Lunch and viewing the Posters</td>
</tr>
</tbody>
</table>
2.00 pm to 3.30 pm
Oral Presentations (10 minutes each)

Chairpersons: Dr Rama Mittal, Dr Annie Hasan
1. Validation of Wilson’s Disease DNA Microarray - Dr Manjula Mathur, Mumbai
2. Antioxidant gene variants and Type-2 Diabetes: A north Indian study - Dr Monisha Banerjee, Lucknow
3. Association study of inflammatory genes with Rheumatic Heart disease in North Indian population: A multi-analytical approach - Ms Usha Gupta, Lucknow
4. Parental CYP21A2 genotyping plays an important role in reduction of neonatal deaths in CAH families - Dr Eunice Marumudi, New Delhi
5. Association of D18S880 polymorphism of the CNDP1 gene with diabetic nephropathy in South Indian population - Dr Bodhini D, Chennai
6. Expression of CD133 and BM11 and its prognostic role in subjects with glioblastoma multiforms from Indian population - Dr Chetan GK, Bangalore
7. Insights on the functional impact of microRNA’s in Autism- Associated copy number variants - Dr Varada Rajan Vaishnavi, Chennai
8. A clustering approach for mapping rare variants based on mutual association - Dr Saurabh Ghosh, Kolkata
9. Genetic markers in PCOS risk and phenotype progression - Dr Srabani Mukherjee, Mumbai

3.30 pm to 4.00 pm
Break for Tea/Coffee and viewing the Posters

4.00 pm to 6.00 pm
Session V: Clinical Genetics

Chairpersons: Dr Ruchi Nanavati, Dr Aparna Parikh
4.00 pm to 4.20 pm
Genetic Disorders and Consanguinity: Indian Scenario - Dr Shubha Phadke, Lucknow
4.20 pm to 4.40 pm
Noninvasive prenatal diagnosis - Dr Nilesh Dharajiya, USA
4.40 pm to 5.00 pm
Disorders of imprinting - Dr Koumudi Godbole, Pune
5.00 pm to 5.20 pm
Fetal dysmorphology in fetal autopsy - Dr Prakash Gambhir, Pune
5.20 pm to 5.40 pm
Molecular Diagnosis of Genodermatoses in India - Dr Parag Tamhankar, Mumbai
5.45 pm to 6.30 pm
Poster Presentation (P61 to P120)
6.30 pm to 7.00 pm
General Body Meeting
8.00 pm to 10.00 pm
Dinner

Day 2: 29th January 2015 (Hall B)

9.30 am to 11.00 am
Session II: Hemoglobinopathies

Chairpersons: Dr S L Kate, Dr Roshan Colah
9.30 am to 9.50 am
Past, Present and future of Hemoglobinopathies in India - Dr Dipika Mohanty, Bhubaneswar
9.50 am to 10.10 am
Spectrum of molecular and clinical heterogeneity in HbH disease in north Indian patients - Dr Reena Das, Chandigarh
10.10 am to 10.30 am
Role of borderline Hb A2 in carrier detection of beta thalassemia - Dr Anita Nadkarni, Mumbai
10.30 am to 10.50 am
Next generation technologies for rare mutation detection - Dr Prashant Khadke, Mumbai
11.00 am to 11.30 am
Break for Tea/Coffee and viewing the Posters
11.30 am to 1.00 pm
Session IV: Genetics of Complex Diseases

Chairpersons: Dr AJS Bhanwer, Dr K Thangaraj
11.30 am to 11.50 am
ITGAM and lupus susceptibility: From genetic association to causal variant identification - Dr Swapan Nath, USA
11.50 am to 12.10 pm
Genetic and epigenetic causes of congenital heart defects - Dr Uppala Radhakrishna, USA
12.10 pm to 12.30 pm
Confused Confucius: The circle of complex disorders - Dr Dwaipayan Bharadwaj, New Delhi
12.30 pm to 12.50 pm
Elucidation of genetic and cellular defect in Neurodevelopmental and Neuropsychiatric disorders – Dr Dhanjit Das, Mumbai
1.00 pm to 2.00 pm
Lunch and viewing the posters
2.00 pm to 3.30 pm
Oral Presentations (O10 to O18)

Chairpersons: Dr Hema Prasad, Dr. V. Babu Rao
1. Whole-exome sequencing helps characterize a rare highly penetrant familial disorder, turning epidemic in a village of Jammu and Kashmir, India - Dr Swarkar Sharma, Jammu
2. FISH for Prenatal, Post-natal, and Preimplantation Genetic Diagnosis - Dr Lim Jee Hian, Malaysia
3. Masking of the commonest Indian beta-thalassaemia lesion IVS 1 nt 5 [G>C] by different δ-globin gene defects - Ms Stacy Colaco, Mumbai
4. Molecular karyotyping for prenatal diagnosis - Dr Manjeet Mehta, Mumbai
5. Effect of hydroxyurea on microRNA expression and its role in fetal hemoglobin induction in sickle cell anemia patients - Ms Madhavi Sawant, Mumbai
6. Validation of nsSNPs for pharmacogenetic analysis amongst hypertensive Punjabi population - Dr Praveen P Balgir, Patiala
7. Identification of novel disease genes/mutations for single gene disorders through homozygosity mMapping and whole exome sequencing - Dr Aneek Das Colaco, Mumbai
8. Chromosomal aberrations and importance of genetic counseling: A study of 288 couples with bad obstetric history - Dr Shailesh Pande, Mumbai
9. Genomic studies of high altitude pulmonary edema, a critical condition in susceptible sojourners - Dr Soma Sarkar, New Delhi

3.30 pm to 4.00 pm
Break for Tea/Coffee and viewing the Posters
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Chairpersons/ Presentations</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.00 pm to 6.00 pm</td>
<td>Session VI: Pharmacogenomics
Chairpersons: Dr Nilima Kshirsagar, Dr. B. R. Das,</td>
<td>Pharmacogenomics of Malaria and its Relevance - Dr Satyamoothy, Manipal</td>
</tr>
<tr>
<td>4.00 pm to 4.25 pm</td>
<td>Understanding therapeutic practice in Schizophrenia using pharmacogenomic approach; an Indian perspective – Dr. Moinak Banerjee, Thiruvananthapuram</td>
<td>Pharmacogenomics and Drug Discovery and Development - Dr Sanish Davis, Mumbai</td>
</tr>
<tr>
<td>4.25 pm to 4.45 pm</td>
<td>4.45 pm to 5.10 pm</td>
<td>Optimal dosing of warfarin in Indian Population: Contribution of Genetic polymorphisms - Dr Shrimati Shetty, Mumbai</td>
</tr>
<tr>
<td>4.45 pm to 5.10 pm</td>
<td>5.10 pm to 5.35 pm</td>
<td>Pharmacoepigenomics of Malaria and its Relevance - Dr Satyamoothy, Manipal</td>
</tr>
<tr>
<td>5.10 pm to 5.35 pm</td>
<td>5.45 pm to 6.30 pm</td>
<td>Poster Presentation (P61 to P120)</td>
</tr>
<tr>
<td>5.45 pm to 6.30 pm</td>
<td>6.30 pm to 7.30 pm</td>
<td>General Body Meeting (Hall A)</td>
</tr>
<tr>
<td>6.30 pm to 7.30 pm</td>
<td>8.00 pm to 10.00 pm</td>
<td>Day 3: 30th January 2015 (Hall A)</td>
</tr>
<tr>
<td>9.30 am to 11.00 am</td>
<td>Session VII: Chromosomal Diseases
Chairpersons: Dr Smita Mahale, Dr Pratibha Amare</td>
<td>Understanding of chromosomal rearrangements: A challenge to Geneticist - Dr Frenny Sheth, Ahmedabad</td>
</tr>
<tr>
<td>9.30 am to 9.50 am</td>
<td>9.50 am to 10.10 am</td>
<td>Assessment of DNA Microarray for evaluation of Microdeletion syndromes - Dr Ashutosh Halder, New Delhi</td>
</tr>
<tr>
<td>9.50 am to 10.10 am</td>
<td>10.10 am to 10.30 am</td>
<td>Indigenous or Outsourcing? Make in India Molecular Diagnosis of Fragile X Syndrome - Dr Sarita Agarwal, Lucknow</td>
</tr>
<tr>
<td>10.10 am to 10.30 am</td>
<td>10.30 am to 10.50 am</td>
<td>Intellectual developmental disorders: A molecular cytogenetic update - Dr Rajasekhar Moka, Manipal</td>
</tr>
<tr>
<td>10.30 am to 10.50 am</td>
<td>11.00 am to 11.30 am</td>
<td>Break for Tea/Coffee and viewing the Posters</td>
</tr>
<tr>
<td>11.00 am to 11.30 am</td>
<td>11.30 am to 1.00 pm</td>
<td>Oral Presentation (O19 to O27)</td>
</tr>
<tr>
<td>11.30 am to 1.00 pm</td>
<td>Oral Presentations (10 minutes each)
Chairpersons: Dr. Y. Z. Italia, Dr Ajit Gorakshakar</td>
<td>1. Mitochondrial DNA diversity and its implications in the genetic history of three different populations of Amini Islander’s of Lakshadweep - Dr MS Mustak, Mangalore</td>
</tr>
<tr>
<td>1.00 pm to 2.00 pm</td>
<td>2.00 pm to 2.30 pm</td>
<td>2. Genetic association study and gene expression analysis revealed osteoprotegerin as candidate gene for otosclerosis - Dr Sourabh Priyadarshi, Bhubaneswar</td>
</tr>
<tr>
<td>2.00 pm to 2.30 pm</td>
<td>Day 3: 30th January 2015 (Hall B)</td>
<td>3. Clinical, Haematological, Molecular characterization and response to hydroxyurea treatment of symptomatic 17 HbSE cases in Eastern India: The largest series in world - Dr Siris Patel, Burla</td>
</tr>
<tr>
<td>9.30 am to 11.00 am</td>
<td>Session VIII: Genetics Epidemiology
Chairpersons: Prof Virginia Kimonis, Dr Kunal Ray</td>
<td>4. Mitochondrial somatic mutations in Human gastric Cancer - Ms Bhagya Bhavana, Hyderabad</td>
</tr>
<tr>
<td>9.30 am to 9.50 am</td>
<td>9.50 am to 10.10 am</td>
<td>5. Clinical Exome sequencing to aid diagnosis - Case studies and lessons learnt - Dr Nandita M, Bangalore</td>
</tr>
<tr>
<td>9.50 am to 10.10 am</td>
<td>10.10 am to 10.30 am</td>
<td>6. The etiopathogenesis of human genetic disease - Translating basic research to clinic - Dr Radha Saraswathy</td>
</tr>
<tr>
<td>10.10 am to 10.30 am</td>
<td>10.30 am to 10.50 am</td>
<td>7. Association of Monocyte chemoattractant protein-1 (MCP-1) gene polymorphisms [-2518 A>G (rs1024611) and I/D (rs3917887)] with T2D and ESRD patients from population of Punjab - AJS Bhanwer, Amritsar</td>
</tr>
<tr>
<td>10.30 am to 10.50 am</td>
<td>11.00 am to 11.30 am</td>
<td>8. Studies on obese breast cancer patients with leptin gene polymorphism - Dr Kaiser Jamil, Hyderabad</td>
</tr>
<tr>
<td>11.00 am to 11.30 am</td>
<td>11.30 am to 1.00 pm</td>
<td>9. Development of multiplex PCR based method for diagnosis of Duchenne Muscular Dystrophy (DMD) in the patients attending PGIMS hospital - Dr Daya Shankar Lal Srivastava, Rohtak</td>
</tr>
<tr>
<td>11.30 am to 1.00 pm</td>
<td>Presentations (10 minutes each)
Chairpersons: Dr Devila Sahu, Dr Manisha Madkaikar</td>
<td>Lunch</td>
</tr>
<tr>
<td>1.00 pm to 2.00 pm</td>
<td>2.00 pm to 2.30 pm</td>
<td>1. Surface Layer Protein-A (SlpA): A protein domain of the Lactobacillus sp. with anti-cancer activity on GIT cancer cell lines - Dr Ranjith Kumavath, Kerala</td>
</tr>
<tr>
<td>2.00 pm to 2.30 pm</td>
<td>Day 3: 30th January 2015 (Hall B)</td>
<td>2. Role of ADAM33-S2 (G/C) gene polymorphism in the etiology of COPD in south Indian population-Ms Vijaya Laxmi K, Hyderabad</td>
</tr>
<tr>
<td>11.00 am to 11.30 am</td>
<td>Presentations (10 minutes each)
Chairpersons: Dr Debdas Bhattacharya, Dr Pratibha Amare</td>
<td>3. Association of PGC-1α Gene with Type 2 Diabetes in Three Unrelated Ethnic Groups of North-West India - Dr Rubina Sharma, Amritsar</td>
</tr>
<tr>
<td>11.30 am to 1.00 pm</td>
<td>Poster presentations (P121 to P185)</td>
<td></td>
</tr>
</tbody>
</table>
4. Association of cytokine gene polymorphism with periodontal disease- Dr Manikandan G R, Trivandrum
5. TP53 polymorphisms and chromosomal instability in Breast Cancer patients: A follow up study- Dr Sarika Sharma, Amritsar
6. A Common Functional Genetic variant of Pancreastatin profoundly increases the risk for cardiometabolic diseases in Indian population- Dr Prasanna KR Allu, Chennai
7. Genotypes of CYP1A1, SULT1A1 and SULT1A2 and risk of squamous cell carcinoma of the esophagus in Kashmir, India; outcome of a case-control study- Dr Idrees Ayoub Shah, J&K
8. Role of Ssh-G11 signaling Novel Transcription Factor BM1 in Medulloblastoma Development- Dr Mohammed Alzal, Aligarh
9. Genetics of Fetal Hemoglobin- Dr Apama Bhanushali, Mumbai

1.00 pm to 2.00 pm Lunch
2.00 pm to 2.30 pm Poster presentation (P121 to P185)
2.30 pm to 3.30 pm Plenary Session-III (Main Auditorium)
 Chairpersons: Prof Ken McElreavey, Dr Balraj Mittal
 Darwin to DNA – Story of Evolution Retold - Dr K Ghosh, Mumbai
 Ethical issues in Human Genetics Research - Dr Roli Mathur, New Delhi
3.30 pm to 4.30 pm Plenary Session-IV
 Chairpersons: Dr Malay Mukherjee, Dr Prochi Madon
 Next Generation Human Genetics: Opportunities and Challenges - Dr Arindam Maitra, Kolkata
 Innovations in chromosome analysis using automated digital imaging technologies and multi-color Spectral Karyotyping (SKY®) - Dr Michael Koehler, Germany
4.10 pm to 4.30 pm Advances in Preimplantation Genetic Screening - Dr Alan Thornhill, UK
4.30 pm to 5.00 pm Valedictory function followed by Tea

Invited Lectures

<table>
<thead>
<tr>
<th>No</th>
<th>Title</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1</td>
<td>Transcriptome dysregulation and single cell analysis in Trisomy 21</td>
<td>Stylianos E. Antonarakis</td>
</tr>
<tr>
<td>I2</td>
<td>Cancer Genetics including Circulating Tumor Cell</td>
<td>Parikh PM</td>
</tr>
<tr>
<td>I3</td>
<td>From Genome To Epigenome: A New Perspective For Understanding Complex Diseases</td>
<td>Sanjeev Galande</td>
</tr>
<tr>
<td>I4</td>
<td>Structure And Evolution Of Genes Of The Innate Immune System</td>
<td>Partha P. Majumder</td>
</tr>
<tr>
<td>I5</td>
<td>No Abstract</td>
<td>N. K. Mehra</td>
</tr>
<tr>
<td>I6</td>
<td>Exome sequencing approaches to understand the genetic basis of human urogenital anomalies</td>
<td>Ken McElreavey</td>
</tr>
<tr>
<td>I7</td>
<td>No Abstract</td>
<td>Rajiv Sarin</td>
</tr>
<tr>
<td>I8</td>
<td>Cytogenetics of Acute Leukemia and Non-Hodgkin Lymphoma</td>
<td>Susan Mathew</td>
</tr>
<tr>
<td>I9</td>
<td>Clinical Applications Of Molecular Genetics In Bone And Soft Tissue Neoplasia</td>
<td>Meera Hameed</td>
</tr>
<tr>
<td>I10</td>
<td>Cytogenetics And Molecular Profiling In Multiple Myeloma</td>
<td>Pratibha S. Kadam Amare</td>
</tr>
<tr>
<td>I11</td>
<td>Translating Cancer Genomics to Medicine</td>
<td>Amit Dutt</td>
</tr>
<tr>
<td>I12</td>
<td>No Abstract</td>
<td>I.C. Verma</td>
</tr>
<tr>
<td>I13</td>
<td>Mitochondrial Disease Diagnosis And Management</td>
<td>Virginia E. Kimonis</td>
</tr>
<tr>
<td>I14</td>
<td>Enzyme Replacement Therapy For Lysosomal Storage Disorders</td>
<td>Mamta Muranjan</td>
</tr>
<tr>
<td>I15</td>
<td>Screening & Diagnosis Of Inborn Erros Of Metabolism (Iems) By Mass Spectrometry - 15 Years Of MILS Experience</td>
<td>Usha P. Dave</td>
</tr>
<tr>
<td>I16</td>
<td>Genetic Disorders and Consanguinity in India</td>
<td>Shubha Phadke</td>
</tr>
<tr>
<td>I17</td>
<td>Noninvasive Prenatal Diagnosis</td>
<td>Nilesh Dhariajya</td>
</tr>
<tr>
<td>I18</td>
<td>Disorders of Imprinting</td>
<td>Kounudi Godbole</td>
</tr>
<tr>
<td>I19</td>
<td>FetalDysmorphology In Fetal Autopsy</td>
<td>Prakash Gambhir</td>
</tr>
<tr>
<td>I20</td>
<td>Molecular Diagnosis of Genodermatoses</td>
<td>Parag M Tamhankar</td>
</tr>
<tr>
<td>I21</td>
<td>The Past, Present and Future of Hemoglobinopathies in India</td>
<td>Dipika Mohanty</td>
</tr>
<tr>
<td>I22</td>
<td>Wide Spectrum Of Molecular And Clinical Heterogeneity In HBH Disease In North Indian Patients</td>
<td>Reena Das</td>
</tr>
<tr>
<td>I23</td>
<td>Role Of Borderline Hb A2 In Carrier Detection Of Beta Thalassemia.</td>
<td>Anita H Nadkami</td>
</tr>
<tr>
<td>I24</td>
<td>Next Generation Technologies For Rare Mutation Detection</td>
<td>Prashant Khadke</td>
</tr>
<tr>
<td>I25</td>
<td>ITGAM And Lupus Susceptibility: From Genetic Association To Causal Variant Identification</td>
<td>Swapan K. Nath</td>
</tr>
<tr>
<td>I26</td>
<td>Genetic And Epigenetic Causes Of Congenital Heart Defects</td>
<td>Uppala R</td>
</tr>
<tr>
<td>I27</td>
<td>Confused Confucius!! The Circle of Complex Disorders</td>
<td>Dwapaypayan Bharadwaj</td>
</tr>
<tr>
<td>I28</td>
<td>Elucidation of genetic and cellular defect in Neurodevelopmental and Neuropsychiatric disorders</td>
<td>Dhanijit Kumar Das</td>
</tr>
<tr>
<td>I29</td>
<td>Immunological Basis Of Schizophrenia: A Diagnostic And Therapeutic Viewpoint</td>
<td>Moinak Banerjee</td>
</tr>
<tr>
<td>I30</td>
<td>Pharmacoeigenomics of Malaria and its Relevance</td>
<td>H. Gupta</td>
</tr>
<tr>
<td>I31</td>
<td>Optimal Dosing Of Warfarin In Indian Population: Contribution Of Genetic Polymorphisms</td>
<td>Shrimati Shetty</td>
</tr>
</tbody>
</table>
I32 Pharmacogenomics and Drug Discovery and Development
Sanish

I33 Understanding Of Chromosomal Rearrangements: A Challenge To Geneticist
Frenny Sheth

I34 Assessment Of DNA Microarray For Evaluation Of Microdeletion Syndromes
Ashutosh Halder

I35 Indigenous Or Outsourcing? Make In India Molecular Diagnosis Of Fragile X Syndrome.
Sarita Agarwal

I36 Intellectual Developmental Disorders: A Molecular Cytogenetic Update
Rajasekhar M

I37 Bridging The Gap From Genotype To Phenotype Using Integrative Genomics Approach
Mitali Mukerji

I38 No Abstract
Subrata Chakrabarty

I39 Nutrient-Mediated Teratogenesis and Risk of Diabesity in Indians
Giriraj Ratan Chandak

I40 Palaeolithic Antiquity And Continuity Of Indian Populations: Genomic And Non-Genomic Evidences
V. R. Rao

I41 Darwin To DNA – Story Of Evolution Retold
K. Ghosh

I42 Ethical Issues in Human Genetics Research
Roli Mathur

I43 Next Generation Human Genetics: Opportunities and Applications
Arindam Maity

I44 Innovations in chromosome analysis using automated digital imaging technologies and multi-color Spectral Karyotyping (SKY®)
Michael R. Koehler

I45 Advances In Preimplantation Genetic Screening
Alan Tomhill

Young Scientist Award

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>YSA1</td>
<td>Role of apoptosis in benign and malignant tumors of breast.</td>
<td>Syeda Zubeda</td>
</tr>
<tr>
<td>YSA2</td>
<td>Investigation of insulin like factor-3 (INSL3) gene polymorphisms with PCOS susceptibility</td>
<td>Nuzhat Shaikh</td>
</tr>
<tr>
<td>YSA3</td>
<td>Human frontal cortex is enriched for G: C>T: A somatic transversions mediated by physiological oxidative stress.</td>
<td>Anchal Sharma</td>
</tr>
<tr>
<td>YSA4</td>
<td>Deregulation of immunogenetic factors in Type 2 Diabetes Mellitus patients with impaired wound healing.</td>
<td>Kanhaiya Singh</td>
</tr>
<tr>
<td>YSA5</td>
<td>CETN1 variations cause idiopathic male infertility.</td>
<td>D V Sudhakar</td>
</tr>
<tr>
<td>YSA6</td>
<td>Genetic epidemiology of pharmacogenetic variants associated with Warfarin and Clopidogrel in North Indians.</td>
<td>Anil K Giri</td>
</tr>
<tr>
<td>YSA7</td>
<td>Abnormal complement activation leads to pathological neovascularisation in subjects with Retinopathy of Prematurity.</td>
<td>Sonika Rathi</td>
</tr>
</tbody>
</table>

Oral Presentations

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1</td>
<td>Validation of Wilson’s Disease DNA Microarray</td>
<td>Manjula Mathur</td>
</tr>
<tr>
<td>O2</td>
<td>Antioxidant Gene Variants and Type 2 Diabetes: A North Indian Study</td>
<td>Pushpank Vats</td>
</tr>
<tr>
<td>O3</td>
<td>Association Study of Inflammatory Genes with Rheumatic Heart Disease in North Indian Population: A Multi-Analytical Approach</td>
<td>Usha Gupta</td>
</tr>
<tr>
<td>O4</td>
<td>Parental CYP21A2 Genotyping Plays an Important Role in the Reduction of Neonatal DeathsinCAH Families</td>
<td>Eunice Marumudi</td>
</tr>
<tr>
<td>O5</td>
<td>Association of D18S880 polymorphism of the CNDP1 gene with diabetic nephropathy in south Indian population</td>
<td>Dhanasekaran Bodhini</td>
</tr>
<tr>
<td>O6</td>
<td>Expression of CD133 and BMI1 and its prognostic role in subjects with glioblastoma multiforme from Indian Population</td>
<td>Chetan G K</td>
</tr>
<tr>
<td>O7</td>
<td>Insights on the Functional Impact of MicroRNAs Present in Autism-Associated Copy Number Variants</td>
<td>VaradarajanVaishnavi</td>
</tr>
<tr>
<td>O8</td>
<td>A Clustering Approach for Mapping Rare Variants Based on Mutual Association</td>
<td>Saurabh Ghosh</td>
</tr>
<tr>
<td>O9</td>
<td>Genetic Markers in PCOS Risk and Phenotype Progression</td>
<td>Srabani Mukherjee</td>
</tr>
<tr>
<td>O10</td>
<td>Whole Exome Sequencing helps characterize a rare highly penetrant familial disorder, turning epidemic in a village of Jammu and Kashmir, India™</td>
<td>Swarkar Sharma</td>
</tr>
<tr>
<td>O11</td>
<td>FISH for Prenatal, Postnatal, and Preimplantation Genetic Diagnosis.</td>
<td>Lim Jee Hian</td>
</tr>
<tr>
<td>O12</td>
<td>Masking of the Commonest Indian b thalassaemia Lesion IVS I nt 5 [G>C] by Different d Globin Gene Defects.</td>
<td>Stacy Colaco</td>
</tr>
<tr>
<td>O13</td>
<td>Molecular Karyotyping for Prenatal Diagnosis</td>
<td>Manjeet Mehta</td>
</tr>
</tbody>
</table>
O14 Effect of Hydroxyurea on MicroRNA Expression and its Role in Fetal Hemoglobin Induction in Sickle cell Anemia Patients
Madhavi V Sawant

O15 Validation of rsSNPs For Pharmacogenetic Analysis Amongst Hypertensive Punjabi Population
Praveen P. Balgir

O16 Identification of Novel Disease Genes/Mutations for Single Gene Disorders through Homozygosity Mapping and Whole Exome Sequencing
Aneek Das Bhowmik

O17 Chromosomal Aberrations and Importance of Genetic Counseling: A Study of 288 Couples with Bad Obstetric History
Shailesh Pande

O18 Genomic Studies of High Altitude Pulmonary Edema, A critical Condition in Susceptible Sojourners
Soma Sarkar

O19 Mitochondrial DNA Diversity and its Implications in the Genetic History of Three Different Populations of Amini Islander’s of Lakshadweep.
M Naveen

O20 Genetic Association study and Gene Expression Analysis revealed Osteoprotegerin as Candidate Gene for Osteosclerosis
Saurabh Priyadarshi

O21 Clinical, Hematological, Molecular Characterization and Response to Hydroxyurea Treatment of Symptomatic 17 HbSE cases in Eastern India: The Largest Series in world
Siris Patel

O22 Mitochondrial Somatic Mutations in Human Gastric Cancer
Bhagya Bhavana V

O23 Clinical Exome Sequencing to Aid Diagnosis – Case Studies and Lessons Learned
Saroja M. K

O24 The Etiopathogenesis of Human Genetic Diseases – Translating Basic Research to the Clinic
Radha Saraswathy

O25 Association of Monocyte chemoattractant protein-1 (MCP-1) gene polymorphisms [-2518 A>G (rs1024611) and I/D (rs3917887)] with T2D and ESRD patients from population of Punjab.
AJS Bhanwer

O26 Studies on Obese Breast Cancer Patients with Leptin Gene Polymorphisms.
Kaiser Jamil

O27 Development of a Multiplex PCR Based Method for Diagnosis of Duchenne Muscular Dystrophy (DMD) in the Patients Attending PGIMS Hospital
Daya Shankar Lal Srivastava

O28 Surface Layer Protein-A (SlpA): A protein Domain of the Lactobacillus sp. with Anti-Cancer Activity on GIT Cancer Cell Lines
Ranjith Kumavath

O29 Role of Adam33-S2 (G/C) Gene Polymorphism in The Etiology of COPD in South Indian Population
Vijaya Laxmi K

O30 Association of PGC-1α Gene with Type 2 Diabetes in Three Unrelated Ethnic Groups of North-West India
Rubina Sharma

O31 Association of Cytokine Gene Polymorphism with Periodontal Disease
Manikandan G R

O32 TP53 Polymorphisms and Chromosomal Instability in Breast Cancer Patients: A Follow up Study
Sarika Sharma

O33 A Common Functional Genetic Variant of Pancreastatin Profoundly Increases the Risk for Cardiometabolic Diseases in Indian Populations
Prasanna K R Allu

O34 Genotypes of CYP1A1, SULT1A1 and SULT1A2 and risk of squamous cell carcinoma of the esophagus in Kashmir, India; outcome of a case-control study
Idrees Ayoub Shah

O35 Role of Shh-Gli1 Signaling Novel Transcription Factor BMI1 in Medulloblastoma Development
Mehdi H. Shahi

O36 Genetics of Fetal Hemoglobin: Relevance for Prognostication
Aparna A Bhanusali

Poster presentations

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Dermatoglyphic Pattern Study in Morton’s Toe/Royal Toe.</td>
<td>Vijay laxmi Gupta</td>
</tr>
<tr>
<td>P2</td>
<td>In Silico Study for Interaction of Ligand Molecules with Ebola Virus VP40 Matrix Protein</td>
<td>Neha Srivastava</td>
</tr>
<tr>
<td>P3</td>
<td>Molecular Characterization of Atypical Deletion Contributing to Clinical Manifestation of Williams-Beuren Syndrome</td>
<td>Rajitha P</td>
</tr>
<tr>
<td>P4</td>
<td>A Systematic Molecular Cytogenetic Characterization of A Supernumerary Marker Chromosome in A Girl With Seizures</td>
<td>Usha R Dutta</td>
</tr>
<tr>
<td>P5</td>
<td>Genomic Approach to Etiology of Pediatric Autism and Intellectual Disability</td>
<td>Ashish Bahal</td>
</tr>
<tr>
<td>P6</td>
<td>Deletion Boundaries and Variable Phenotypic Expression in WHS</td>
<td>Chirag Modi</td>
</tr>
<tr>
<td>P7</td>
<td>The Role of Microsatellites – BAT26, D2S123 Flanking The Human Mismatch Repair Gene in the Genesis and Progression of Oral Squamous Cell Carcinoma</td>
<td>K Navin Nair</td>
</tr>
</tbody>
</table>

S6 Indian Journal of Human Genetics | Supplement 1 | 2014 | Volume 20
<table>
<thead>
<tr>
<th>Paper No.</th>
<th>Title of the Research</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>P8</td>
<td>Role of Basic Fibroblast Growth Factor (bFGF) as an Angiomerodulator in Oral Submucous Fibrosis</td>
<td>Revathy Bharathan</td>
</tr>
<tr>
<td>P9</td>
<td>Microsatellite Instability in Oral Squamous Cell Carcinoma With Reference to Tumor Suppressor Genes</td>
<td>Ayswarya T</td>
</tr>
<tr>
<td>P10</td>
<td>Role of PTEN Mutation in Oral Squamous Cell Carcinoma.</td>
<td>Binisree SS</td>
</tr>
<tr>
<td>P11</td>
<td>Molecular Basis of Afibrinogenemia: Application for Prenatal Diagnosis in The Affected Families</td>
<td>Alliya Mukaddam</td>
</tr>
<tr>
<td>P12</td>
<td>Coexistence of Glucose-6-phosphate Dehydrogenase Deficiency and Gilbert’s Syndrome with Hereditary Spherocytosis</td>
<td>Manu Jamwa</td>
</tr>
<tr>
<td>P13</td>
<td>Selection of reference genes for qRT-PCR based mRNA expression analysis of human reticulocytes from patients with hereditary spherocytosis</td>
<td>Anu Aggarwal</td>
</tr>
<tr>
<td>P14</td>
<td>Pharmacogenetic Implications Of Adducin rs4961 Gene Amongst Hypertensive Punjabi Population</td>
<td>Harsimran Kaur</td>
</tr>
<tr>
<td>P15</td>
<td>A Study of Association of GSTM1, GSTT1, GSTP1, MDR1 and TPMT Gene Polymorphism with Susceptibility to Acute Lymphocytic Leukemia (ALL)</td>
<td>Satbir Kaur Bhullar</td>
</tr>
<tr>
<td>P16</td>
<td>I/D Polymorphism in Angiotensin Converting Enzyme Gene and its pharmacogenetic implications amongst Hypertensive Punjabi Population</td>
<td>Sweta Saha</td>
</tr>
<tr>
<td>P17</td>
<td>Demographic and Clinical Profile of Major Depressive Disorder (MDD) Patients Attending AIIMS Psychiatry Department</td>
<td>Jaspreet Kaur Bhullar</td>
</tr>
<tr>
<td>P18</td>
<td>Current therapeutic approaches for Duchenne Muscular Dystrophy</td>
<td>Hemant Pandey</td>
</tr>
<tr>
<td>P19</td>
<td>Host IL28B Genotype Plays an Important Role as a Predictor for Determining Response to IFN Therapy and Spontaneous Clearance in HCV Infected Thalassemia Patients</td>
<td>Rushna Firdaus</td>
</tr>
<tr>
<td>P20</td>
<td>BMPR1B Signalling in HEK293 Cells</td>
<td>Chandra Bhan Singh</td>
</tr>
<tr>
<td>P21</td>
<td>Genetic Factors Related to Unconjugated Hyperbilirubinemia Amongst Adults.</td>
<td>Ashish S Chiddarwar</td>
</tr>
<tr>
<td>P22</td>
<td>Mutational Screening of PINK1 and LRRK2 in Indian Parkinson Disease Patients</td>
<td>Tamali Haldar</td>
</tr>
<tr>
<td>P23</td>
<td>Mutational screening of PKD1 in North Indian patients</td>
<td>Sonam Raj</td>
</tr>
<tr>
<td>P24</td>
<td>Association of gene polymorphisms with Chronic Obstructive Pulmonary Disease in North Indian Population</td>
<td>Akancha Sahu</td>
</tr>
<tr>
<td>P25</td>
<td>Cytokine Gene Polymorphisms and their Association with Cervical Cancer: A North Indian Study</td>
<td>Maneesh Kumar Gupta</td>
</tr>
<tr>
<td>P26</td>
<td>Molecular Study of FANCA Complementation Group in Indian Population</td>
<td>Avani P Solanki</td>
</tr>
<tr>
<td>P27</td>
<td>Analysis of Microsatellite Markers in FSHD Families – A Simple and Indirect Approach to Pre-Implantation Genetic Diagnosis.</td>
<td>Manikandan Suraj</td>
</tr>
<tr>
<td>P28</td>
<td>Correlation of Immuno-haematological Concepts from murine model to human CNV</td>
<td>Raikwar Himanshu P</td>
</tr>
<tr>
<td>P29</td>
<td>Polymorphisms in TP53, MDM2, HIF1a, BRCA1 and Rare Chromosomal Anomalies in a Male Breast Cancer Patient and His Unaffected Son</td>
<td>Vasudha Sambyal</td>
</tr>
<tr>
<td>P30</td>
<td>Determination of RHD Zygosity Based on Most Probable Genotype and PCR-SSP</td>
<td>Disha Parchure</td>
</tr>
<tr>
<td>P31</td>
<td>Vascular Endothelial Growth Factor (VEGF) Gene Polymorphisms and Breast Cancer Risk in Punjabi Population from North West India</td>
<td>Kamlesh Guleria</td>
</tr>
<tr>
<td>P32</td>
<td>Cytogenetic Aberrations as a Measure of Genotoxicity in Rural Population Living near River Beas</td>
<td>Jagjeet Kaur</td>
</tr>
<tr>
<td>P33</td>
<td>ABO Blood Group and Risk of Coronary Artery Disease.</td>
<td>Prerna K Chawla</td>
</tr>
<tr>
<td>P34</td>
<td>Gene Variants of Pro-Oxidant and Antioxidant Genes in Indian Coronary Artery Disease Patients</td>
<td>Sripriya Natarajan</td>
</tr>
<tr>
<td>P35</td>
<td>Common Variants of SLCO1B1, CYP3A4, ABCB1, CYP3A5, ABCG5 and CYP7A1 Genes as Predictors of Lipid-Lowering Response to Atorvastatin Therapy</td>
<td>Prajakta A Kadam</td>
</tr>
<tr>
<td>P36</td>
<td>Evidence for expression of ARL15, a novel GWAS identified G protein in Rheumatoid Arthritis Synovial Fibroblasts</td>
<td>Sujit Kashyap</td>
</tr>
<tr>
<td>P37</td>
<td>Identification and Characterization of D Variants in Apparently Rhd Negative Individuals</td>
<td>G Vidya</td>
</tr>
<tr>
<td>P38</td>
<td>BRCA 1 and 2 Mutations Detection by NGS in Breast Cancers Patients – Pilot Study.</td>
<td>Jaya Vyas</td>
</tr>
<tr>
<td>P39</td>
<td>Association of MTHFR C677T and A1298C Polymorphisms with Male Infertility in South Indian Population.</td>
<td>Suganya J</td>
</tr>
<tr>
<td>P40</td>
<td>Association of rs363039 and rs3630350 SNPs in SNAP25 Gene with Intellectual Disability</td>
<td>Aswini Sivasankaran</td>
</tr>
<tr>
<td>P41</td>
<td>Molecular Screening in Two Cases of 46, XX Males</td>
<td>Bhavani G</td>
</tr>
<tr>
<td>P42</td>
<td>Preliminary Screening for YqMicrodeletions, Polymorphisms and Chromosomal Abnormalities in Indian Infertile Men</td>
<td>Smita B Kujur</td>
</tr>
<tr>
<td>P43</td>
<td>Cytogenetic Abnormalities in Patients with Multiple Myeloma Identified by Interphase FISH</td>
<td>Perumal G</td>
</tr>
<tr>
<td>P44</td>
<td>A Rare Interaction of Homozygous β-thalassemia with HbH disease</td>
<td>Pallavi R Mehta</td>
</tr>
</tbody>
</table>
P45 Vitamin D Receptor Gene Polymorphisms in Gallbladder Cancer
Patients of North Central India
Jyotsna Singh

P46 Expression Analysis of S100 Calcium Binding Protein A9 and ERBB2 in Gallbladder Cancer.
Shushruta Bhunia

P47 Study on the Whole Genome Methylation Profiling in Gall Bladder Cancer and Gall stone Disease.
Preeti Sharma

P48 ADH1 and ALDH2 gene polymorphisms among the Koraga population of South Karnataka, India.
K Vinutha Lakshmi

P49 Identification of Hepatocyte nuclear factor-1beta (HNF1B) gene deletions in Indian diabetic patients with renal abnormalities
Sekar Kanthimathi

P50 Doi-Globin Gene Variants Contribute in Substantial Reduction in HbA2 Levels?
Priya Haritharan

P51 Altered DNA Methylation in Young Coronary Artery Disease Patients Identified Using Whole Genome Methylation Profiling
Subhoshree Ghose

P52 DNA Copy Number Changes in Myelodysplastic Syndromes
Purvi P Mohanty

P53 Association of Alu-ACE and CYP1A1 genes with colon cancer.
G Sudhakar

P54 PON1 gene polymorphisms and its activity in Indian women with PCOS
Roshan Dadachanji

P55 In silico DNA Protein interaction study on Wild and Mutant sequence of PAX9
Prashant Ranjan

P56 Cytogenetics in Bad Obstetric History and Genetic counseling.
Chandel D

P57 Inherited and Acquired Thrombophilia in Women with Recurrent Pregnancy Loss
Rucha Patil

P58 Biomonitoring and Genetic risk assessment in Petrol Pump attendants
Shaikh Amrin

P59 Role Of Some Antioxidants On Cyclosporine Induced Cytogenetic Alterations In Human Blood Cultures
Ambar A Pathan

P60 Some cytogenetic aspects of infertility in western India
Ansari Nishat

P61 Genetic variants of ABCA1 and coronary artery disease
Ashley Stanley

P62 Study of Chromosomal Aberrations and Molecular Mutations in Myelodysplastic Syndrome
Seema A Korgaonkar

P63 A Novel Phenotype in Complete Androgen Insensitivity Syndrome due toPhe583 in Androgen Receptor Gene
Pooja Chauhan

P64 Syndromic and Non-Syndromic Polydactyly
Rashmi Patel

P65 Essentiality Verses Affordability Of Genetic Tests: Two Ends Of Spectrum In India
Ashwini Karkamkar

P66 Cytogenetic Analysis For Chromosome Instability In FanconAnemia – SRL Experience.
Rupa C Dalvi

P67 Genetic variation in SMAD1 Gene in a cohort of South Indian patients with idiopathic congenital Nystagmus
Neeraja T Koppaka

P68 Partial Trisomy of Chromosome 9 with Congenital Anomalies
Preeti Kumari

P69 Association of Toll Like Receptor and CD14 Genes Polymorphisms With Neonatal Sepsis
Snehal L Martin

P70 A Complex Rearrangement of Chromosome 4p16 and 3p26.3 with Divergent Clinical Presentations: Report of an Extensive Indian Pedigree
Barkha Singh

P71 Renin Angiotensin System and Metabolic Syndrome : An Association Study on an Endogamous Tribal Population of Uttarakhand
Vani Kandpal

P72 Mutations analysis of ARX and MECP2 genes in mental retardation
Gayatri Kulkarni

P73 Urine Metabolite Profiling for Detection of in Born Errors of Metabolism in Case of Intellectual Disability Disorders using UPLC-MS
Vidya D Nikam

P74 Effect of Novel Intronic Mutation c. 694+8_694+18del in LDLR Gene in the Pathogenicity of Familial Hypercholesterolemia
Nagarajan Anul Jothi

P75 Test For Transmission Disequilibrium Including Non-Informative Parents
Hemanth Kulkarni

P76 Understanding the role of Trans acting genetic factor KLF1 in Hereditary Persistence of Fetal Hemoglobin Syndromes in Indian population.
Neetu Rani

P77 Study of Various Polymorphisms in Indian Warfarin Treated Patients
Tejasvita Gaikwad

P78 Association of MMP-1 (-181A>G) and MMP-3(-1612 5A>6A) Promoter Polymorphisms and Risk for HIV progression.
Shrutika D Marathe

P79 Association of DNA Repair Pathway Gene XRCC1 Variants with Human Male Infertility
Vertika Singh

P80 IL-17a Cytokine Polymorphisms and Risk of Early Miscarriage
Priyanka Verma

P81 A Novel Mutation in FRMD7 Results in Putative Disruption of the FERM Domain and Causes X-Linked Idiopathic Congenital Nystagmus in a North Indian Family
Shashank Gupta

P82 A case of Lenz Majewski syndrome: report of the sixth case in literature with PTDSS1 gene mutation
Shweta Kondurkar

P83 Heritable/genetic microcytic hypochromic anemia: Four unusual case vignettes
Prashant Sharma

P84 Evaluation of A Monoclonal Antibody as A biomarker for Prostate Cancer
Swarnalatha Daram

P85 Cytogenetic Studies in Chromosome Instability Syndromes
Mahendra B Sute

P86 Fragile-X, CNVs and single gene disorders in selected cases from western India
Dhanashree J Warang
<p>| P88 | Association of Proinflammatory Cytokine Genes (IL-6, TNF-A And IL-1β) Polymorphisms With Disease Susceptibility of Indian SLE | Vinod Umare |
| P89 | FISH in Multiple Myeloma: Comparison between FISH results on unsorted bone marrow and isolated plasma cells. | Rupesh R Sanap |
| P90 | Cytogenetic study of Klinefelter Syndrome | Gajanan B Padmawar |
| P91 | Somatic Genomic Change of Rs9344 SNP of CCND1 in Gingio Buccal Squamous Cell Carcinoma of Indian Patient Population | Nilabja Sikdar |
| P92 | The Role of Meiotic Gene Abnormality in the Onset of Aneuploidy and Pregnancy Loss. | Abhishek Chowdhury |
| P93 | A Study to Genotype the Primary and Secondary Modifiers of Beta Thalassaemia Among Patients from Pune, India | Sumedha Dharmarajan |
| P94 | Survey and Cytogenetic Analysis of Mentally Retarded Individuals in Human Population of Himachal Pradesh | Neelam Thakur |
| P95 | Genetic Evaluation of Polymorphism of Candidate Genes in Patients with Type 2 Diabetes Mellitus of Jammu Region (J&K State). | Surbhi Sethi |
| P96 | Frequency of Incidence of JAK2 V617F Mutation in Myeloproliferative Neoplasms (MPNs) | Ruby Gupta |
| P97 | Differential Diagnosis to Molecular Diagnosis of Urea Cycle Disorder by New Born Screening using Urine GC-MS and Blood MS/MS | Vrushali S Joshi |
| P98 | Functional characterization of exonic mutations causing splicing defects in autosomal recessive genetic disorders | Ajay K Chaudhary |
| P99 | Effect of Heme Oxygenase Gene Polymorphism on Methemoglobin Levels in NADH-Cytochrome b5 Reductase Deficiency. | Shaswati Das |
| P100 | Genetic Polymorphisms and Risk Of Ischemic Stroke and Acute Myocardial Infarction: A Hospital Based Case Control Study | Borah PK |
| P101 | Angiotensin II type 1 receptor (AT1R) gene polymorphisms and Essential Hypertension | Mayank Chaudhary |
| P102 | Correlation of Arsenic Toxicity with Oral/Oropharyngeal malignancy in West Bengal. | Pritika Pal |
| P103 | Influence of Vitamin D Receptor Gene Variants on Vitamin D3 Modulated Granulysin and Perforin Positive Cells in Pulmonary Tuberculosis | Afsal K |
| P104 | Short Stature - The Only Morphological Stigma in Isochromosome Xq | Shanoli Ghosh |
| P105 | Regulatory Role of Vitamin D Receptor Gene Variants on Vitamin D3 Modulated MIG and IP-10 Production in Pulmonary Tuberculosis | Harishankar M |
| P106 | Ameliorative Effects of S-Allyl-L-Cysteine (SAC) Against Lead Induced Toxicity | Ankit B Nareja |
| P107 | Association between MTHFR C677T polymorphism and Migraine risk: a meta-analysis | Vandana Rai |
| P108 | Association Between MTHFR C677T Polymorphism and Breast Cancer Risk | Pradeep Kumar |
| P109 | On Testing of Gene-Gene Interaction Based on Case-Control Data using Genotype Similarity between Individuals | Indranil Mukhopadhyay |
| P110 | Haplotype Analysis of Myotonic Dystrophy Type 1 Locus in India: Molecular Genetic Approach | Ashok Kumar |
| P111 | The Distribution of Six DNA Markers of Selected Pesticide Metabolizing and Detoxification Genes in Rural Population of Punjab, North West India | S M S Chahal |
| P112 | Genetic Polymorphism of Dopamine Receptor Genes and Nicotine Dependence in Smokers of North West Indian Region | Rupinder Kaur |
| P113 | Non Synonymous SNPs in the Catestatin/Perastatin Region of Chomogranin A: Profound Associations with Plasma Glucose, Blood pressure and Risk for Type 2 Diabetes/Hypertension | Malapaka Kiranmayi |
| P114 | BCL2-938C>A and BAX-248G>A promoter polymorphisms in the development of AML | Anuradha Gingeetham |
| P115 | Nucleophosmin Mutation in De-Novo Acute Myeloid Leukemia | Sano Naseem |
| P116 | Vascular Endothelial Growth Factor (VEGF) Polymorphisms in Gall Bladder Cancer Progression and Survival | Kumudesh Mishra |
| P117 | Preimplantation Genetic Diagnosis: A perspective | Rasha Chirputkar |
| P118 | Chromosomal Abnormalities Arising Due To Maternal/Parental Meiotic Errors: An Important Cause For Recurrent Pregnancy Loss. | Anushka Shrivastava |
| P119 | Turner Syndrome and a variant of Turner Syndrome | Meenakshi A |
| P120 | Prevalence of Malaria in A Tertiary Care Hospital in Navi Mumbai, India | Gurjeet Singh |
| P121 | Characterization of Aspergillus Species and its Antifungal Drug Sensitivity Testing | Raksha |
| P122 | Identification of Mutations in the NODAL Gene in Congenital Heart Disease Patients in Indian population | Manohar Lal Yadav |
| P123 | NATZ Gene Polymorphism as A Predisposing Factor for Phenyltoin Intoxication In Tuberculous Meningitis or Tuberculoma Patients Having Seizures- A Pilot Study. | Prashant S Adole |
| P124 | Identification and Characterization of Novel Non-synonymous Variation in Paired Domain of PAX9: Probable Cause of Congenital Tooth Agenesis in an Indian Family | Smitha K |
| P125 | Standardization of IGK Rs 121918591 by PCR-AFLP | Shobha R Dhiman |</p>
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P126</td>
<td>Role of Intronic SNP and Its Association with Oral Squamous Cell Carcinoma in the Populations of Western Part of India.</td>
<td>Sejal M Desai</td>
</tr>
<tr>
<td>P127</td>
<td>Analysis of Obesity Related Gene with Special Reference to Solute Carrier Family 6 (Amino Acid Transporter), Member 14 (Slc6a14): A Computational Approach</td>
<td>Rajan K Singh</td>
</tr>
<tr>
<td>P128</td>
<td>Fat Mass Obesity Associated (Fto) Gene: Computational Analysis of Non-Synonymous Single Nucleotide Polymorphisms (Nssnps)</td>
<td>Perwendra Kumar</td>
</tr>
<tr>
<td>P129</td>
<td>Effects of Gender on The Relationship Between IL6 Promoter Polymorphism and Lymphocyte Gene Expression in Schizophrenia</td>
<td>Deepthi Venugopa</td>
</tr>
<tr>
<td>P130</td>
<td>A Novel and Recurrent Lynch Syndrome Associated Indian Founder Mutation in Mismatch Repair (MMR) Gene MLH1</td>
<td>Nikhat Khan</td>
</tr>
<tr>
<td>P131</td>
<td>Genetic Counseling an Essential Component of Thalassemia Management for Mitigating Disease Burden</td>
<td>Gayatri R Iyer</td>
</tr>
<tr>
<td>P132</td>
<td>A Case Report of Breast and Ovarian Cancer Family</td>
<td>Bibi Umea Salma</td>
</tr>
<tr>
<td>P133</td>
<td>Genetic Variability of 15 Autosomal STR Loci in Central Indian Populations</td>
<td>Pankaj Shrivastava</td>
</tr>
<tr>
<td>P134</td>
<td>Cytogenetic survey of Primary Amenorrhea - A study of 818 cases from Department of Cytogenetics, Metropolis Healthcare Limited.</td>
<td>Divya Shivaram shetty</td>
</tr>
<tr>
<td>P135</td>
<td>Genetic Polymorphism of Glutathione S-Transferase Genes GSTT1, GSTM1, GSTP1 and Susceptibility to Breast Cancer.</td>
<td>Gurmeet Kaur</td>
</tr>
<tr>
<td>P136</td>
<td>Association of Cholesteryl Ester Transfer Protein (CETP) A Gene Polymorphism with Non Diabetic Atherosclerosis.</td>
<td>Rajni Dawar</td>
</tr>
<tr>
<td>P137</td>
<td>A Rare Trisomy 18p Syndrome Characterised by Microarray Analysis and Metaphase FISH</td>
<td>Anju Joshi Sharma</td>
</tr>
<tr>
<td>P138</td>
<td>Negative Epistatic Interaction of Sickle Cell Trait and Alpha-Thalassemia Against Severe P. falciparum Malaria.</td>
<td>Prasanta Purohit</td>
</tr>
<tr>
<td>P139</td>
<td>A Novel Symptomatic B0-Thalassemia Mutation Cd-15(-T) in Compound Heterozygote First Time with Sickle Cell Gene from Eastern India & Response to Hydroxyurea</td>
<td>Satyabrata Meher</td>
</tr>
<tr>
<td>P140</td>
<td>Genotype-Phenotype Correlation in Patients with Hbsj-Thalassemia in Eastern India.</td>
<td>Snehadhini Dehury</td>
</tr>
<tr>
<td>P141</td>
<td>De-Novo Compound Heterozygous Mutations in MYH7 Gene in Patient with Restrictive Cardiomyopathy</td>
<td>Mitali Kapoor</td>
</tr>
<tr>
<td>P142</td>
<td>Sickle Cell Disorder- A Family Study with Total Ten Children (8 Homozygous and 2 Heterozygous) from Satpuda Hilly Ranges of Maharashtra</td>
<td>GT Kulkarni</td>
</tr>
<tr>
<td>P143</td>
<td>Analysis of Alu Insertion/Deletion Polymorphisms in Four Endogamous Groups from North West India</td>
<td>Gagandeep Singh</td>
</tr>
<tr>
<td>P144</td>
<td>Improved Multiplex Ligation Dependent Probe Amplification Technique for Studying Copy Number Variations</td>
<td>Bhavyasri Vennapa</td>
</tr>
<tr>
<td>P145</td>
<td>Molecular Testing for Inherited Genetic Diseases: A Metropolis Laboratory Experience</td>
<td>Pratiksha R Chheda</td>
</tr>
<tr>
<td>P146</td>
<td>Association of 14bp Insertion/Deletion (indel) Polymorphism of HLA-G Gene in Women with Recurrent Miscarriages from Amritsar Region of Punjab, India.</td>
<td>Vishali Kalotra</td>
</tr>
<tr>
<td>P147</td>
<td>DNA repair gene defects and its association with myelodysplastic syndrome</td>
<td>Dolly Joshi</td>
</tr>
<tr>
<td>P149</td>
<td>Genetic Association of ISL1 Gene Polymorphism with Chronic Otitis Media with Effusion</td>
<td>Ranju</td>
</tr>
<tr>
<td>P150</td>
<td>Role of GSK3β and Cyclin D1 in The Etiology of Esophageal Cancer</td>
<td>Mohammed Khaliq Mohiuddin</td>
</tr>
<tr>
<td>P151</td>
<td>Screening of Cervical Smears: Promoter Methylation of Hmlh1 & Rarβ2 Genes and Prevalence of HR-HPV Sub-Types in Cervical Pathologies</td>
<td>Sravya Thumooju</td>
</tr>
<tr>
<td>P152</td>
<td>Exome sequencing of a selected gene panel in patients with Autism</td>
<td>Sireesha D</td>
</tr>
<tr>
<td>P153</td>
<td>MMP9 polymorphism, prevalence and effect on cardiac iron overload in patients with beta thalassemia major.</td>
<td>Mable Misha Singh</td>
</tr>
<tr>
<td>P154</td>
<td>Are MTHFR and MTRR polymorphisms considered to be as risk factor in mothers of Down syndrome cases?</td>
<td>Ambreen Asim</td>
</tr>
<tr>
<td>P155</td>
<td>TP- PCR: Advancement in Diagnosis of Fragile X Syndrome</td>
<td>Deepika Delsa Dean</td>
</tr>
<tr>
<td>P156</td>
<td>Association Analysis of Various Anthropometric and Clinical Factors in Diabetic Retinopathy (DR) in Population of Punjab</td>
<td>Gurvinder Singh</td>
</tr>
<tr>
<td>P157</td>
<td>Fanconi Chromosomal Breakage Analysis Report of 98 Patients</td>
<td>Indhumathi N</td>
</tr>
<tr>
<td>P158</td>
<td>Spectrum of Hemoglobinopathies in Santhal's Tribal Community of Jamui District, Bihar</td>
<td>Ashish Kumar Singh</td>
</tr>
<tr>
<td>P159</td>
<td>Study of Risk Factors in Oral Carcinoma and the relationship between Tumor Thickness and Regional Nodal Involvement</td>
<td>Sama Rizvi</td>
</tr>
<tr>
<td>P160</td>
<td>Genetic Diversity in Reasi and Udhampur Districts of Jammu and Kashmir, India.</td>
<td>Indu Sharma</td>
</tr>
<tr>
<td>P161</td>
<td>Detection and Evaluation of BCR/ABL Gene mutations in CML Patients Treated with Imatinib Mesylate</td>
<td>Zaker F</td>
</tr>
<tr>
<td>P162</td>
<td>Clinical and Molecular Study of NPC in Iran: Report of 5 Novel Mutations</td>
<td>Amirabbas Parizadeh</td>
</tr>
<tr>
<td>P163</td>
<td>Identification of Genetic Loci for Uric Acid in North Indians using Genome Wide Association Study</td>
<td>Aarthi Ravindran</td>
</tr>
<tr>
<td>P164</td>
<td>Role of Fumarate Hydratase Gene Mutation in the Etiology of Uterine Fibroids</td>
<td>Ch. Bharathi</td>
</tr>
<tr>
<td>P165</td>
<td>Genetic Correlation of XmnII, MTHFR (C677T), ACE (I/D) Polymorphism with The Clinical Severity of Beta Thalassemia in Delhi-NCR Region.</td>
<td>Swati Chawla</td>
</tr>
<tr>
<td>P166</td>
<td>Variation in Exon-Intron Architecture of Autosomal and X-linked Genes in Dipteran Species</td>
<td>Shagun Shukla</td>
</tr>
<tr>
<td>P167</td>
<td>Association of Apolipoprotein E, A5 And Endothelial Nitric Oxide Synthase Gene Polymorphisms in Myocardial Infarction: A Hospital Based Study in North East India</td>
<td>Sukanya Baruah</td>
</tr>
<tr>
<td>P168</td>
<td>Non-Familial Sporadic Heritable Retinoblastoma and it’s Correlation with Paternal Sperm DNA Damage</td>
<td>Shilpa B</td>
</tr>
<tr>
<td>P169</td>
<td>Deregulation of Mirnas in Cervical Cancer: Control by DNA Methylation</td>
<td>Vinay K. Varghese</td>
</tr>
<tr>
<td>P170</td>
<td>Amyotrophic Lateral Sclerosis (ALS) – An Overview</td>
<td>Varun Sharma</td>
</tr>
<tr>
<td>P171</td>
<td>Genetic and Environmental factors predisposing to Depression and Suicidal behaviour in Idu Mishmi Tribe of Arunachal Pradesh.</td>
<td>Piyooosh Kumar Singh</td>
</tr>
<tr>
<td>P172</td>
<td>Molecular characterization of tetherin/BST-2 gene promoter in Indian HIV infected long term non progressors</td>
<td>Dhanashree D. Jagtap</td>
</tr>
<tr>
<td>P173</td>
<td>Epidemiology of Inbreeding Depression on Physical, Reproductive and Cognitive Behavior</td>
<td>Mohd Fareed</td>
</tr>
<tr>
<td>P174</td>
<td>Demographic and Clinical Profile of Dilated Cardiomyopathy Patients from North India</td>
<td>Soumi Das</td>
</tr>
<tr>
<td>P175</td>
<td>Genetics and Epigenetics Variations Can Influence Malaria Susceptibility</td>
<td>Himanshu Gupta</td>
</tr>
<tr>
<td>P176</td>
<td>Aberrant DNA Methylation in Early Oral Carcinogenesis: A Review</td>
<td>Astha Agarwal</td>
</tr>
<tr>
<td>P177</td>
<td>Genomics of Chronic Obstructive Pulmonary Disease and Lung Function: A Review</td>
<td>Astha Ranjan</td>
</tr>
<tr>
<td>P178</td>
<td>Family History of Cancer and Risk of Squamous Cell Carcinoma of Esophagus - An Outcome of a Case Control Study</td>
<td>Nazir Ahmad Dar</td>
</tr>
<tr>
<td>P179</td>
<td>Sickle Cell Anaemia- Community Control Program for Tribal Population Groups of Satpuda Hilly Ranges from Nandurbar, Dist Maharashtra</td>
<td>S.L.Kate</td>
</tr>
<tr>
<td>P180</td>
<td>Genome Wide Association Study of Glycemic Related Traits in Indians</td>
<td>Priyanka Banerjee</td>
</tr>
<tr>
<td>P181</td>
<td>Study of Bacterial Diversity in Beta-Thalassemia Patients of North Maharashtra Region by RFLP Analysis.</td>
<td>Ranjeet Kumar</td>
</tr>
<tr>
<td>P183</td>
<td>Oxidative DNA Damage Assessment in in situ COPD Cases</td>
<td>Gurpreet Kaur</td>
</tr>
<tr>
<td>P184</td>
<td>Genomic Affinities Among Different Population Groups of Jammu Region of J&K State</td>
<td>Rakesh Kumar Panjaliya</td>
</tr>
<tr>
<td>P185</td>
<td>Prevalence of various cardiac disorders in Pune population and associated physiological complications</td>
<td>Syed Abrar Ahmad</td>
</tr>
<tr>
<td>P186</td>
<td>Role of various variants of phase-1 xenobiotic metabolising genes in modifying esophageal squamous cell carcinoma risk in Kashmir- a high risk area.</td>
<td>Gulzar Ahmad Bhat</td>
</tr>
<tr>
<td>P187</td>
<td>Association Of TP53 Expression And GST & CYP1A1 Polymorphism In Oral Squamous Cell Carcinoma</td>
<td>Chandreyee Chakraborty</td>
</tr>
<tr>
<td>P188</td>
<td>Mutation in PAX3 associated with Neural Tube Defect</td>
<td>Rashmi</td>
</tr>
<tr>
<td>P189</td>
<td>Study of Abacavir hypersensitivity in Indian Subpopulation and its association with HLA-B*5701 and HCP5 rs2395029.</td>
<td>Yash Y Panchal</td>
</tr>
<tr>
<td>P190</td>
<td>Structural and Functional analysis of Protein-Protein interaction network in neurodegenerative disorders.</td>
<td>Nitin Thukral</td>
</tr>
<tr>
<td>P191</td>
<td>A Preliminary Study on Human Sperrimiation Defect</td>
<td>Manish Jain</td>
</tr>
<tr>
<td>P192</td>
<td>Genetic variant analysis in three Indian ethnically diverse human genome.</td>
<td>Seema Malhotra</td>
</tr>
<tr>
<td>P193</td>
<td>Genetic Variants of APOBEC3G-90C/G and -571G/C Polymorphism and Risk of acquiring HIV infection.</td>
<td>Sonam Lata</td>
</tr>
<tr>
<td>P194</td>
<td>Clinical and molecular characterization of Fragile X Syndrome</td>
<td>Shyla R Menon</td>
</tr>
<tr>
<td>P195</td>
<td>CYP1A1 MspI gene polymorphism and breast cancer susceptibility in females of Jammu region.</td>
<td>Ravi Sharma</td>
</tr>
</tbody>
</table>
Invited Lectures

I1 Transcriptome dysregulation and single cell analysis in trisomy 21
Stylianos E. Antonarakis

Trisomy 21 is the most frequent genetic cause of cognitive impairment. To assess the perturbations of gene expression in trisomy 21, and to eliminate the noise of genomic variability, we studied the transcriptome of fetal fibroblasts from a pair of monozygotic twins discordant for trisomy 21. We have shown that the differential expression between the twins is organized in domains along all chromosomes that are either upregulated or downregulated. These gene expression dysregulation domains (GEDDs) can be defined by the expression level of their gene content, and are well conserved in induced pluripotent stem cells derived from the twins’ fibroblasts. Comparison of the transcriptome of the Ts65Dn mouse model of Down’s syndrome and normal littermate mouse fibroblasts also showed GEDDs along the mouse chromosomes that were syntenic in human. The GEDDs correlate with the lamina-associated (LADs) and replication domains of mammalian cells. The overall position of LADs was not altered in trisomic cells; however, the H3K4me3 profile of the trisomic fibroblasts was modified and accurately followed the GEDD pattern. These results indicate that the nuclear compartments of trisomic cells undergo modifications of the chromatin environment influencing the overall transcriptome, and that GEDDs may therefore contribute to some trisomy 21 phenotypes. The study of gene expression in mammalian single cells via genomic technologies now provides the possibility to investigate the patterns of allelic gene expression. We used single-cell RNA sequencing to detect the allele-specific mRNA level in 203 single human primary fibroblasts over 133,633 unique heterozygous single-nucleotide variants (hetSNVs). We observed that at the snapshot of analyses, each cell contained mostly transcripts from one allele from the majority of genes; indeed, 76.4% of the hetSNVs displayed stochastic monoallelic expression in single cells. Remarkably, adjacent hetSNVs exhibited a haplotype-consistent allelic ratio; in contrast, distant sites located in two different genes were independent of the haplotype structure. Moreover, the allele-specific expression in single cells correlated with the abundance of the cellular transcript. We observed that genes expressing both alleles in the majority of the single cells at a given time point were rare and enriched with highly expressed. Overall, these results have direct implications in cellular phenotypic variability. Single cell transcriptome analysis in trisomy 21 will be discussed.

I2 Cancer genetics including circulating tumor cells
Parikh PM

The first human genome project was completed in 2003 at the cost of over $ 3 billion. The decoded information was printed into 100 books of more than 1000 pages each, using font size that was barely readable. Today the same task can be done in less than $ 1,000/- and the information requires 800 MB of storage space on Google cloud that will cost $ 25 per year. This is possible due to the explosive speed at which technology is becoming available in cancer genetics. Similarly the 5 year survival in acute lymphoblastic leukemia has increased from less than 10% in 1960s to more than 95% in 2010. This was due to better understanding of the tumor biology as well as drug combinations and scheduling. The next step was unravelling the molecular mutation driving tumor growth and designing a drug in-silico to specifically dock in the 3D receptor structure – the famous success story of imatinib and chronic myeloid leukemia.

Today there are several such examples of deep dive into tumor mutations, downstream signalling and drug’gable targets that have led to meaningful prolongation of the life of patients with solid tumors as well – lung cancer, renal cell carcinoma and breast cancer being a few of the examples. With the help of technology available today, we can benefit cancer patient outcome by using the following strategies: Tumor specific driver mutation analysis

- Tumor drug handling kinetics
- Somatic cell pharmacogenomics
- Liquid biopsy and circulating tumor cell/ DNA monitoring

An article on the role of circulating tumor cells (CTCs) was first published in 2004. Ten years later, more than 15,000 articles exist in pubmed, more than 740 being published in 2014 alone. So this technology is well established, deeply studied and even US FDA approved for three cancers (breast, prostate and colorectal). A total of 15 ml of peripheral blood is required to identify CTCs. The sample is processed and stained to detect nuclear DNA, cytoplasmic cytokeratin and surface epithelial cell adhesion molecules (Fig 1). Such cells can be enriched, stained and examined under light/ digital microscopy to ascertain its morphological characteristics (Fig 2). This test is currently available in India and helps in cancer screening, has prognostic and predictive significance, enables us to identify response/ progression 8 to 12 weeks before it becomes evident on conventional imaging (CT Scan) and can also be used for further molecular testing (including gene profiling, cellular phenotyping and in-vitro chemosensitivity). The cut off level prognostic value of CTCs is 5 cells per 7.5 ml of blood for breast and prostate cancer. It predicts almost a doubling of overall survival when comparing outcome of patients below (favourable) and above (unfavourable) cut off values of CTCs (Table 1). This test is also considered of value in other cancers like lung cancer, bladder cancer, biliary duct cancer, liver cancer and pancreatic cancer. Thus measurement of CTCs is now an integral part of cancer patient evaluation and management. It can optimize the treatment strategy in individual patients allowing successful implementation of precision oncology and personalized medicine.

Table 1: Prognostic importance of CTCs in predicting overall survival in metastatic cancers

<table>
<thead>
<tr>
<th>Metastatic (stage IV) cancers</th>
<th>Favourable CTCs (months)</th>
<th>Unfavourable CTCs (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast cancer overall survival</td>
<td>21.9</td>
<td>10.9</td>
</tr>
<tr>
<td>Colorectal cancer overall survival</td>
<td>18.5</td>
<td>9.4</td>
</tr>
<tr>
<td>Prostate cancer overall survival</td>
<td>21.7</td>
<td>11.5</td>
</tr>
</tbody>
</table>

CTCs: Circulating tumor cells
I3 From genome to epigenome: A new perspective for understanding complex diseases
Sanjeev Galande

Identical DNA sequence in the genome of complex organisms adopts cell type specific chromatin architecture in response to developmental programs and environmental cues. Such cell type specific conversion of genome to epigenome is associated with specific expression pattern of genes that eventually determines the cell fate. It is therefore becoming increasingly apparent that epigenetic marks reflect the functional state of the genome. The past decade has witnessed the explosion of information in biomedical sciences due to the availability of high quality genome sequences and the development of high throughput techniques that assay DNA and histone modifications. It is now possible to analyze epigenetic mechanisms that implement genetic programs of cellular differentiation and analyze epigenetic changes that take place in response to environmental changes including disease conditions. I will specifically focus on recent developments in the understanding of epigenetic regulation of complex diseases such as cancer and diabetes. I will summarize the technological breakthroughs and also discuss how they would enable us to study disease susceptibility and presumably take us towards personalized medicine.

I4 Structure and evolution of genes of the innate immune system
Partha P. Majumder

Evolutionarily, the adaptive or acquired immune system is recent. It was built atop the innate immune system, which is phylogenetically more ancient and developed before the separation of vertebrates and invertebrates. Invertebrates and jawlessfish depend solely on the innate immune system. The innate immune system controls and assists the adaptive immune system, without which the adaptive immune response offers weak protection. We have tested the opposing views concerning evolution of genes of the innate immune system that (i) being evolutionary ancient, the system may have been highly optimized by natural selection and therefore should be under purifying selection, and (ii) the system may be plastic and continuing to evolve under balancing selection. We shall present results of an extensive and comprehensive study of genetic diversity, assayed by DNA resequencing, of 12 genes (CAMP, DEFA4, DEFA5, DEFA6, DEFB1, MBL2, and TLRs 1, 2, 4, 5, 6, and 9) in healthy volunteers recruited from various parts of India. For some of these genes, we have also compared data of the Indian populations with populations from other global regions. In these genes, there is (i) generally an excess of rare variants, (ii) high, but variable, degrees of extended haplotype homozygosity, (iii) low tolerance to nonsynonymous changes, (iv) essentially one or a few high-frequency haplotypes, with star-like phylogenies of other infrequent haplotypes radiating from themodal haplotypes. Purifying selection is the most parsimonious explanation operating on these innate immunity genes. This genetic surveillance system recognizes motifs in pathogens that are perhaps conserved across a broad range of pathogens. Hence, functional constraints are imposed on mutations that diminish the ability of these proteins to detect pathogens.

I5 N. K. Mehra
No abstract

I6 Exome sequencing approaches to understand the genetic basis of human urogenital anomalies
Ken McElreavey

Exome sequencing has emerged as a very powerful tool to identify the genetic basis of rare human Mendelian disorders. This approach is particularly attractive for mutation detection in cases of Disorder of Sex Development (DSD) since these conditions are very difficult to study using classical genetic approaches. DSD covers a wide spectrum of phenotypes and is defined as ‘DSD is defined as ‘congenital conditions in which the development of chromosomal, gonadal, or anatomical sex is atypical’. DSD cases with errors in sex-determination include 46,XY gonadal dysgenesis that is either complete or partial, or 46,XX testicular or 46,XX ovotesticular DSD, where testis develops in an XX individual. Other forms of DSD include male pseudohermaphroditism/undervirilisation of an XY male or female pseudohermaphroditism/overvirilisation of an XX female as well as other genitourinary disorders such as cloacal extrophy, vaginal atresia, or MURCS. Excluding cases where the biochemical profile indicates a specific error in steroidogenesis, it is estimated that a specific molecular diagnosis is obtained in 20% of DSD cases and that only 50% of 46,XY children with DSD will receive a definitive clinical diagnosis. We have performed exome sequencing in >60 cases of DSD. Exon enrichment was performed using Agilent SureSelect Human All Exon V4. Paired-end sequencing was performed on the Illumina HiSeq2000 platform with an average sequencing coverage of x50. In this talk I will summarise our main findings and highlight some of the advantages and surprises that have resulted from this approach.

I7 Hereditary cancers in South Asians: Bench to bedside
Rajiv Sarin

Frequency of Mendelian inheritance of cancers ranges from <2% of Tobacco related cancer, 5% for breast cancer, 10% for ovarian cancers and sarcomas and 25% of retinoblastomas and some other childhood cancers. It is estimated that 50,000 hereditary cancers occur annually in India. However, due to lack of awareness, facilities and the cost of genetic analysis, comprehensive genetic services have not evolved in south Asia. Few studies have reported germline mutations in small cohorts of hereditary cancers from India, Pakistan and Sri Lanka and certain specific mutations occur commonly across countries in
south Asia. We have focused on identifying population specific founder and recurrent germline mutations and characterization of variants of unknown significance to develop rapid and cost effective geo-ethnic specific genetic analysis algorithms. The ICMR centre for Advanced Research in Cancer Genetics in ACTREC has established the largest south Asian cohort of ~3000 families with various inherited cancer predisposition syndromes. Using various genetic analysis approaches ranging from CSGE screening to NGS and with final validation with Sanger sequencing, we have identified germline mutation in one or more of the 20 high penetrance cancer predisposing genes (BRCA1, BRCA2, TP53, MLH1, MSH2, APC, RB1, RET, STK11, Nucleotide excision repair genes etc). Select novel, recurrent and unclassified sequence variants (Missense and intronic) have been further characterized by co-segregation, bio-informatics, structural and functional studies. A South Asian high penetrance cancer gene (SAHPCG) germline mutation database has been created. In addition to identification of large number of unclassified variants, known polymorphisms and known deleterious mutations, a large number of novel deleterious mutations in several high penetrance genes have been identified so far. Most recurrent germline mutations in South Asians, with maximum cases coming from our cohort, show geo-ethnic and community wise clustering with clear founder effect and suitable for population specific cost-effective mutation analysis algorithms. Targeted resequencing of commonly implicated genes reduces cost and time for genetic analysis. The penetrance and clinical outcome for RET, BRCA1 and Mismatch repair genes has been established for the first time for South Asian population.

I8 Cytogenetics of acute leukemia and non‑Hodgkin lymphoma
Susan Mathew
An overview of the current World Health Organization (WHO) classification of acute leukemia and non-Hodgkin lymphoma will be presented. The primary focus will be on cytogenetic and molecular cytogenetic abnormalities in acute lymphoblastic leukemia, acute myeloid leukemia, and non-Hodgkin lymphoma and their significance in diagnosis, treatment, and prognosis. The relevance of Cytogenetics in the genomics era will be discussed.

I9 Clinical applications of molecular genetics in bone and soft tissue neoplasia
Meera Hameed
Bone and soft tissue tumors are heterogeneous neoplasms of mesenchymal origin with diverse histologies and clinical behavior. Due to rarity of these tumors, pathological diagnosis can be challenging. In recent years the discovery of specific genetic abnormalities in these tumors has allowed for better classification, more diagnostic accuracy and understanding of mechanisms behind the pathogenesis. Recent technological advances such as next generation sequencing have found their place in clinical labs and are beginning to provide new insights into disease biology and discoveries of novel mutations and translocations applicable to diagnosis, prognosis and therapeutics. Based on our understanding so far, the genetics of bone and soft tissue tumors can be divided into three categories: Translocation associated sarcomas (tumors with simple karyotypes), sarcomas with complex karyotypes and those with point mutations and amplifications. Some examples include Ewing Sarcoma, the prototypic round cell sarcoma with its characteristic reciprocal translocation involving EWSR1 at ch22q12 to one of the ETS family of transcription factors, most commonly FLI1 resulting in t(11;22)(q24;q12) in the over 90% of the cases. While this highlights the importance of fusion genes as diagnostic markers, caveats remain in that these genes (for example EWSR1) are promiscuous and can have multiple partners for the same tumors and also the same fusion observed in more than one tumor type. In recent years, oncogenic driver mutations are increasingly being discovered with tumor specificity, a classic example being gastrointestinal stromal tumor driven by KIT and PDGFRA receptor tyrosine kinases with remarkable responses to targeted therapy and prolonged survival in these patients. The identification of IDH1 and IDH2 mutations in cartilage neoplasms has paved the way to explore the “cancer metabolome” and further explore the role of global methylation in these neoplasms. Within the genomic complexity of tumors one could still define specific alterations such as gene amplifications of CDK4 and MDM2 which are hallmarks of well-differentiated and dedifferentiated liposarcomas and low grade osteosarcomas. Thus we are in an era of modern medicine, where advances in molecular diagnosis have been most prolific and are reflected by the rapid discovery of fusion genes, tumor specific oncogenic drivers even in these rare disease entities.

I10 Cytogenetics and molecular profiling in multiple myeloma
Pratibha S. Kadam Amare
Multiple Myeloma (MM), is a clonal B-cell malignancy, characterized by heterogeneity at both clinical and genomic level. Despite the role of specific cytogenetic aberrations in the pathogenesis of disease, the prognostic significance of cytogenetic changes have been identified in MM and that has become an integral part of disease management. The genetic heterogeneity enabled the categorization of disease in to several subclasses. The most common are hyperdiploidy and non-hyperdiploid MM. The non-hyperdiploid MM frequently shows structural aberrations such as unique IgH translocations , aberrations of chromosome 13 , p53 deletion and 1q amplification. In comparison with conventional karyotyping, fluorescence in situ hybridization (FISH) could efficiently detect various genetic changes in non-cycling plasma cells in 50-90% of MM cases. Several high resolution platforms like CGH (comparative genomic hybridization) array, SNP(single nucleotide polymorphism) array, gene expression profiling (GEP) have provided comprehensive data at gene level and at RNA level. Genome expression profiling (GEP) It has also
been used to identify high risk patients with multiple myeloma, and to further classify risk in poor prognosis multiple myeloma patients such as those with t(4;14). The Durie–Salmon Staging System and the International Staging System (ISS) are important for prognosis, but are not useful for therapeutic risk stratification. Independent prognostic markers provide a better estimate of differences in underlying myeloma biology. Either FISH or conventional cytogenetics, or preferably both, should be done at diagnosis in all individuals. Kumar and colleagues (2011) reported on the first study examining the utility of two GEP-based risk stratification systems in a cohort of individuals undergoing initial therapy in the context of a phase III trial of Lenalidomide in the treatment of multiple myeloma. The small number of patients in this study, however, prevents a comparison of the GEP and FISH-based risk stratification, and an assessment of the incremental value of GEP over FISH-based risk stratification” (Kumar, 2011). Mikhail and colleagues (2013) proposed a risk-adapted approach to the management of individuals with newly diagnosed symptomatic multiple myeloma. The Mayo Stratification of Myeloma and Risk-Adapted Therapy (mSMART) is an evidenced-based algorithm using conventional cytogenetic methods (karyotyping) and FISH to prognostically stratify individuals with multiple myeloma according to multiple recurrent chromosomal changes. The guideline suggests these factors must be considered to individualize the choice of therapy for persons with multiple myeloma. Although GEP analysis is included in the algorithms for prognostic factors and risk stratification, the consensus guideline does not currently recommend performing GEP analysis in a non-research setting. The National Comprehensive Cancer Network® (NCCN®) Clinical Practice Guidelines in Oncology™ for multiple myeloma (2013), states the role and application of gene expression profiling is emerging as a tool to further understand the molecular subtypes of multiple myeloma, However, standardized testing for GEP is unavailable and data is inadequate to determine how this prognostic information can improve health outcomes by directing care management for individuals with multiple myeloma. Data of Tata Memorial Hospital on comprehensive profiling of various cytogenetic markers by interphase-FISH will be discussed.

I11

Translating cancer genomics to medicine

Amit Dutt

Recent developments in genomic research and targeted cancer therapy provide a unique opportunity to improve cancer care. The identification of inherited and somatic mutations in cancer has revealed key biological pathways that underlie the initiation and progression of cancer. In turn, these advances are beginning to transform diagnostics (allowing cancers to be classified based on molecular mechanism and allowing clinical trials to be undertaken on more homogeneous groups of patients) and therapeutics (sparking a new generation of drugs targeted at the molecular alterations that cause cancer). At the same time, these discoveries have underscored the complexity of cancer genetics; at present, we know only a subset of the genes that play a causal role in cancer. A comprehensive catalog of all such genetic lesions, together with a description of the cancer types in which they occur and the combinations in which they co-occur, is necessary for the effective development of targeted cancer therapy. However, despite much advances, it has not been technically feasible to interrogate the complete set of genomic alterations in a tumor in a systematic, comprehensive manner. This limitation is now set to change. Newer generation SNP arrays and massively parallel Next Generation DNA sequencing technologies already make possible the readout of millions and billions of nucleotides in a single run and will permit complete genome characterization of cancer. These methodologies and tools are being used to advance cancer sciences, leading to discovery of novel molecular subclasses, new therapeutic targets and biomarkers for clinical development. Using these and conventional technologies, my work led to the identification of causal alterations in human cancer and discovered novel somatic activating alterations at FGFR2, EGFR, AKT, PDGFRA and FGFR1 mutations in endometrial cancer, lung squamous carcinoma and cervical carcinoma. More recently, my laboratory has discovered and characterized some novel potentially therapeutic target in Indian samples of lung carcinomas and head and neck cancer.

I12

I.C. Verma

No abstract

I13

Mitochondrial disease diagnosis and management

Virginia E. Kimonis

Mitochondrial diseases are one of the most common inborn errors of metabolism, with a conservative estimated prevalence of approximately 1:5,000. Primary mitochondrial diseases are defined as disorders impacting the structure or function of the mitochondria as a result of either nuclear DNA (nDNA) or mitochondrial DNA (mtDNA) mutations. More than 1,400 nuclear genes are either directly or indirectly involved in mitochondrial function and contribute to 90% of primary mitochondrial disorders. There is currently no consensus on diagnosis and treatment of mitochondrial disorders therefore a panel was appointed to utilize a comprehensive review of the literature, surveys, and the Delphi method to reach consensus-based recommendations. These standardized recommendations on the evaluation, diagnosis, and care of patients with suspected or demonstrated mitochondrial disease will be discussed.

I14

Enzyme replacement therapy for lysosomal storage disorders

Mamta Muranjan

Lysosomal storage disorders (LSDs) are a group of 50 disorders, each resulting from a mutation of a gene coding for a lysosomal protein. The most frequent outcome of this mutation is a deficiency of a lysosomal enzyme (acid
Disease	Product	Source (cell culture)	US FDA approval In India	Source (cell culture)	US FDA approval In India
Velaglucerase	HF	2010	2013	CHO	2003
Targlucerase	CC	2012	NA	HF	Not approved
Fabry	Agalsidase β	CHO	2003	2005	CHO
Agalsidase α	HF	Not approved		CHO	2014
Pompe	Alglucosidase α	CHO	2006	2008	CHO
Mucopolysaccharidosis type I	Laronidase	CHO	2003	2006	CHO
Mucopolysaccharidosis type II	Laronidase	CHO	2003	2006	CHO
Mucopolysaccharidosis type IV	Eloksulfase α	CHO	2014	NA	CHO

CHO: Chinese hamster ovary, HF: Human fibroblasts, CC: Carrot cell,

ERT modifies the natural course of the disease and has to be taken lifelong. Optimum response is achieved with early institution of therapy. However, ERT does not cross the blood brain barrier and therefore CNS manifestations are not reversed or prevented. The major deterrent for widespread use of ERT in India is the prohibitive cost. The annual cost for therapy of Gaucher disease is US $40,000–320,000 while the annual cost of ERT for Fabry disease is approximately US $160,000. Therefore access is limited currently to a few patients through charitable programs of the manufacturers or isolated instances of indirect government funding through the organizations such as the armed forces or state police. Children with LSDs have been treated at KEM Hospital, Mumbai since the year 2000. This includes 11 children with Gaucher disease, 3 infants with classical Pompe disease and one child with Hunter disease.

I15

Screening & diagnosis of inborn errors of metabolism (iems) by mass spectrometry - 15 years of mils experience

Usha P. Dave

Most Inborn Errors of Metabolism (IEM) cause severe pathological sequelae like mental retardation, sudden infantile death or other irreversible neurological conditions. Hence, in the developed countries Newborn Screening programs (NBS) are being implemented to reduce the burden imposed by genetic disorders. Mass spectrometry – a high throughput method for selective IEMs was used for NBS which was soon recommended by WHO as a significant, preventive, public health strategy to decrease morbidity and mortality in infants and children. In the absence of newborn screening programmes in India, for the first time, the screening of IEMs in high-risk children using Gas Chromatography/Mass Spectrometry (GC/MS) was started in 1997 by MILS International India with technical support from MILS Japan. This was then mainly used to confirm the clinical diagnosis. Till date, total 3341 high-risk babies from NICU & PICU with clinical symptoms like seizures, vomiting, poor feeding, metabolic acidosis, lethargy, and developmental delay were referred. Of the total, 39% (1297 of 3341) were diagnosed to have metabolic abnormality; of these amino and organic acidopathies accounted for 43%, followed by mitochondrial, nucleic acid & sugar metabolism disorders. Since the objective of metabolic screening is early & accurate diagnosis for prevention, the critically ill neonates within 30 days of age were particularly studied & found to have 41% (353/864) abnormality. The higher incidence of certain organic and amino acidopathies, mainly MMA, MSUD, PA, UCD, OTC, GA-I and Tyrosinemia was evident as a major cause of mortality and morbidity. Interestingly, 34 cases of GA-I & 10 cases of Canavan disease were diagnosed and further mutational studies for prenatal diagnosis in few families were carried out. A few interesting IEM cases will be illustrated considering religious, racial and ethnic diversity in Indian population with cultural and traditional misconceptions. Genetic counseling to the parents and family members was possible because of the confirmed diagnosis by GC/MS which helped in explaining the role of heredity (viz. autosomal recessive), risk of recurrence and scope of prevention. With over 28 million annual births, our MILS data offered important information to health policy makers on the frequency of certain IEMs in India to include in NBS programs. The present MILS method using GC/MS technology is not only useful for simultaneous screening of over 140+ metabolic conditions in one test but also gives confirmed diagnosis. Hence, MILS method can be used for both mass screening and diagnosis, thereby making it effective in the long run considering prevention and rehabilitation cost of the disabled child.

I16

Genetic disorders and consanguinity in India

Shubha Phadke

Association of genetic disorders and consanguinity is concerns autosomal recessive disorders mainly. Consanguinity being
highly prevalent in India up to 30 to 40% in some populations, higher prevalence of autosomal recessive disorders is often stated without strong evidence of population based data. The available data shows that the prevalence of autosomal recessive disorders may be one to one and half times in consanguineous populations. Our unpublished data shows that the consanguinity is 2 to 3 times common in families with rare autosomal recessive disorders (26.6%) as compared to common genetic disorders like beta thalassemia (10.7%). Though the consanguinity may not greatly influence the magnitude of the prevalence of autosomal recessive disorders greatly, these families with consanguinity provide an important diagnostic and research approaches. We used SNP microarray to identify candidate genes in autosomal recessive disorders of heterogeneous nature. In Osteogenesis imperfecta (OI) cases from consanguineous families SNP microarray was successful identifying the causative gene in 4 out of 7 cases and missed one autosomal recessive gene in one. Exome sequencing in two cases of OI identified mutation in heterozygous state in COL1A2 gene, reinforcing the possibility of autosomal dominant disorders in consanguineous families. Illustrative cases stressing utility of SNP microarray in diagnostic approach to microcephaly will be presented. These families with new syndromes from consanguineous families also are good substrate for gene mapping using exome sequencing and gold mine of rare syndromes from consanguineous families need to be rapidly explored for identification of novel genes.

I17
Noninvasive prenatal diagnosis
Nilesh Dharajiya

Non-invasive prenatal testing for fetal aneuploidies by massively parallel sequencing has emerged as powerful tool in management of high-risk pregnancies. The high sensitivity and specificity proven by multiple clinical studies bundled with non-invasive nature and convenience of a blood draw has resulted in widespread adoption of the test. Since the publication of a committee opinion from The American College of Obstetricians and Gynecologists and the Society for Maternal-Fetal Medicine, non-invasive testing has become a part of the standard of care for aneuploidy testing. Since the introduction of NIPT to detect trisomy 21 by Sequenom Laboratories in October 2011, the technology has rapidly advanced to analyze other autosomal and sex chromosome aneuploidies, and now includes the detection of subchromosomal deletion and duplication events. As the first laboratory to design and clinically validate the test, here we offer a unique perspective on NIPT from the position of an experienced lab, which has processed more than 300,000 samples. This talk will encompass the fundamentals of NIPT by massively parallel sequencing. We will then delve into clinical performance of the assay including full trisomies and subchromosomal deletion/duplication events. Finally, we will go over interesting clinical cases that we encountered during our workflow.
cancer risk. Mutation analysis could be performed by PCR and Sanger sequencing for XPA, TGM1, RAB27A, COL7A1 genes. Results: During the period 2011-2015, a total of 169 patients were included as genodermatoses. Epidermolysis bullosa and autosomal recessive ichthyosis were the most common groups (21 patients each) followed by Griscelli syndrome (n=20), Xeroderma pigmentosum (XP) (n=15), ectodermal dysplasia (n=11), progeria (n=8) and infantile hyalinosis (n=9). Mutations could be identified in XPA, TGM1, RAB27A and COL7A1 genes. The mutation hotspots identified include p.R184X of RAB27A gene (Griscelli syndrome), exon 3 of XPA (neurological XP) and exon 72, 73 and 74 of COL7A1 gene (EB dystrophica). Conclusion: Indian patients with genodermatoses exhibit considerable genetic and allelic heterogeneity complicating molecular diagnosis. A next generation sequencing panel based testing would be ideal to increase sensitivity of diagnosis.

I21
The past, present and future of hemoglobinopathies in India
Dipika Mohanty
The inherited disorders of hemoglobin are by far the most common inherited single gene disorder not only India but in the whole world. Recent surveys suggest that between 300,00 and 400,000 babies are born with a serious hemoglobin disorder each year and that up to 90% of these births occur in low or middle income countries. India falls in this category. Early comprehensive treatment and improved technology have changed thalassemia from a fatal pediatric disease to one with which patients survive throughout adulthood and can enjoy productive lives. Advances in treatment have resulted in improved quality of life and a potential for a cure. The same applies to sickle cell anemia also. The first patient of thalassemia was detected at Calcutta in the year 1938 by Mukharjee and the presence of SCD in the tribals was first reported by Cut bush and Lehman in Nilgiri hill tribes in 1952. From those days onward the country has experienced a great move towards thalassemic care and cure and also control of birth of thal major babies in the last two decades. Similarly in the area of sickle cell disease care now the quality of life of the homozygous patients have significantly improved with therapy. With Hydroxy urea and also with greater awareness amongst the communities. However, it is detected that the public awareness and care of cases of hemoglobinopathies in whole of India is still very low as well as parents and affected siblings were also studied for deletional and non-deletional α gene defects. Patients with HbH disease from India has been published which includes both deletional-α-thalassemia and non-deletional-α-thalassemia. This report highlights the clinical and molecular heterogeneity of HbH disease from north India. Materials and Methods: We encountered 34 patients with HbH disease in 28 families from north India over 15 years and performed the molecular analysis to determine the frequency of both deletional and non-deletional alpha gene defects. Patients as well as parents and affected siblings were also studied for automated complete blood cell counts, reticulocyte counts and HbH inclusions using 1% brilliant cresyl blue. Cation exchange HPLC (Bio-Rad Laboratories, Hercules, CA, USA) and hemoglobin electrophoresis at pH 8.6 were performed. Genomic DNA from peripheral blood leucocytes was extracted by the phenol-chloroform method. A multiplex Gap-PCR was carried out as an initial screen which tested for deletions-α3.7, α4.2, αSEA, αMED and αSA. Southern Blot for alpha and zeta probes with Bam H1 digest was performed on 20 subjects. PCR followed by sequencing for both α1 and α2 genes were done. The α–GlobinXS MLPA kit (MRC Holland) with 35 probes was used to screen for the extent of deletions. Results: Homozygous Hb Sallanches (α2 codon 104 G>A; Cys → Tyr) in 6 cases in 5 families was found. Homozygous polyadenylation signal mutation of α2(-AA) AATAAA → AATA—was detected in 3 cases. One patient each showed double heterozygosity for -α3.7/αHb Sallanchesα, α76 +T/αHb Sallanchesα. PolyAC/ αHb Sun Prairieα, αPolyAC/α76 +Tα and -α3.7/αHb Seal Rockα and αSeal Rockα/−. Three patients were double heterozygous for -α3.7/-SA. Fifteen patients from 12 families had α0 deletion of varying lengths in combination with -α3.7 based on the MLPA analysis. The extent of deletions was variable ranging from α0 starts upstream of ξ gene & extends downstream of α1, deletion of probes 1-18, deletion of probes 1-22 and deletion of probes 8-18. The genotype phenotype correlation illustrating the clinical heterogeneity of HbH disease is detailed in Table 1. Discussion: This is the largest series of cases of Mumbai, Chennai, Delhi. The improved component therapy has tremendously helped the & Thalassemia major patients. The availability of oral chelating agents in less prices is also helpful in bringing down the complications of thalassemia major patients and increased their survival significantly. Some of them live upto 40 to 50 years now. However, much research work remains to be done as regards the pharmacogenomics, newer drug use, understanding complexity of the disease and also genotype-phenotype correlation. Micro mapping also is also essential.

I22
Wide spectrum of molecular and clinical heterogeneity in HbH disease in North Indian patients
Reena Das
Background: Deletional α+ -thalassemia comprising of -α3.7 and -α4.2 deletions is commonly encountered in the Indian sub-continent but HbH disease, resulting from the co-inheritance of α+-thalassemia trait and αα-thalassemia trait, is uncommon with just a few cases reported. Few recent reports on the molecular characterization of patients with HbH disease from India has been published which includes both deletional-α-thalassemia and non-deletional-α-thalassemia. This report highlights the clinical and molecular heterogeneity of HbH disease from north India. Materials and Methods: We encountered 34 patients with HbH disease in 28 families from north India over 15 years and performed the molecular analysis to determine the frequency of both deletional and non-deletional alpha gene defects. Patients as well as parents and affected siblings were also studied for automated complete blood cell counts, reticulocyte counts and HbH inclusions using 1% brilliant cresyl blue. Cation exchange HPLC (Bio-Rad Laboratories, Hercules, CA, USA) and hemoglobin electrophoresis at pH 8.6 were performed. Genomic DNA from peripheral blood leucocytes was extracted by the phenol-chloroform method. A multiplex Gap-PCR was carried out as an initial screen which tested for deletions-α3.7, α4.2, αSEA, αMED and αSA. Southern Blot for alpha and zeta probes with Bam H1 digest was performed on 20 subjects. PCR followed by sequencing for both α1 and α2 genes were done. The α–GlobinXS MLPA kit (MRC Holland) with 35 probes was used to screen for the extent of deletions. Results: Homozygous Hb Sallanches (α2 codon 104 G>A; Cys → Tyr) in 6 cases in 5 families was found. Homozygous polyadenylation signal mutation of α2(-AA) AATAAA → AATA—was detected in 3 cases. One patient each showed double heterozygosity for -α3.7/αHb Sallanchesα, α76 +T/αHb Sallanchesα. PolyAC/ αHb Sun Prairieα, αPolyAC/α76 +Tα and -α3.7/αHb Seal Rockα and αSeal Rockα/−. Three patients were double heterozygous for -α3.7/-SA. Fifteen patients from 12 families had α0 deletion of varying lengths in combination with -α3.7 based on the MLPA analysis. The extent of deletions was variable ranging from α0 starts upstream of ξ gene & extends downstream of α1, deletion of probes 1-18, deletion of probes 1-22 and deletion of probes 8-18. The genotype phenotype correlation illustrating the clinical heterogeneity of HbH disease is detailed in Table 1. Discussion: This is the largest series of cases of
HbH disease encountered in Indians. Since HbH disease is uncommon in India, the clinical recognition of the diagnosis is limited to few centres and molecular characterization is incomplete. Our study shows considerable heterogeneity both at the molecular level as well as the clinical presentation. Alpha2 gene sequencing revealed a novel mutation with addition of +T at codon 76 leading to a frameshift mutation .MLPA will be useful in characterizing the approximate location of the breakpoints and designing simple GAP PCR assays to identify the deletion. Increased awareness amongst the clinicians as well as more diagnostic laboratories will help to identify more patients with HbH disease.

I23 Role of borderline HbA2 in carrier detection of beta thalassemia
Anita H Nadkarni

Background: The increase HbA2 level is the characteristic of β thalassemia carriers. However, in some cases the level of HbA2 is not typically elevated and some difficulties may arise in making the diagnosis. For these reasons the quantification of HbA2 is very important and the results must be interpreted together with hematological and biochemical evidence. Aims and Objectives: The aim of the study was to find out the role of borderline Hb A2 in carrier detection of beta thalassaemia and its prevalence in our population. Results: We report a retrospective analysis carried out on 16,590 subjects referred for thalassemia screening program. Of these subjects, 370 had borderline HbA2 values [3.0-3.9%], thus giving a prevalence of 2.2%. The genotyping in these subjects revealed presence of β thalassaemia mutations in 72.6% of cases. Interestingly 25.5% of these showed HbA2 levels <3.5%. These findings are of significance since most laboratories in India rely on a threshold HbA2 level of 3.5% for diagnosing β thalassaemia carriers. These 48 cases would have been misdiagnosed if molecular analysis of globin gene was not undertaken. Mild mutations like Cap site +1 [A→C] and the Poly A tail defects accounted for most of the β thalassaemia alleles when HbA2 levels were <3.5% and β+ IVS 1 nt 5 [G→C] alleles when HbA2 levels were >3.5%. Associated δ thalassaemia is one of the factors that leads to reduction of HbA2 levels . We also observed that the co-inheritance of α (14%) and δ thalassaemia (17.5%) alleles contributed in reduction of the HbA2 levels in β thalassaemia carriers

Conclusions: Borderline HbA2 is not a rare event in a population with a high prevalence of β-thalassemia carriers. These data support the necessity to investigate these cases at a molecular level, particularly if the partner is a carrier of β-thalassemia.

I24 Next Generation technologies for rare mutation detection
Prashant Khadke

Background: HPLC is considered as the gold standard technology to identify beta thalassemia carriers. The HPLC technique gives highly accurate and reproducible results in the quantitation of Hb A2 and Hb F. However the dilemma occurs when the Hb A2 is normal (<3.5%) or in the borderline range. These situations require the use of DNA analysis techniques that can help identify the mutations in the patients thus helping in an efficient diagnosis. Method: Over 200 mutations leading to beta thalassemia have been identified worldwide. Of which approximately 50 mutations have been reported in the Indian population. Today CRDB and ARMS techniques very well established for the 6 common mutations but for the remaining 44 mutations a step wise approach to identify may prove long and cumbersome. Technologies like Multiplex Real time PCR and droplet digital PCR have been designed to help improve the process of identification of mutations. These technologies are not restricted to mutation detection and offer a wide range of applications. Real-time PCR system is based on the detection and quantitation of a fluorescent reporter. The signal increases in direct proportion to the amount of PCR product in a reaction. By recording the amount of fluorescence emission at each cycle, it is possible to monitor the PCR reaction during exponential phase where the first significant increase in the amount of PCR product correlates to the initial amount of target template. The higher the starting copy number of the nucleic acid target, the sooner a significant increase in fluorescence is observed Droplet Digital PCR system is the third generation of PCR technology. Droplet Digital PCR provides an absolute measure of target DNA molecules with unrivaled accuracy, precision, and sensitivity. This technology enables to do absolute quantitation in the sample without any reference standard and without any standard curve analysis. This innovative technology from Bio-Rad will bring in many new solutions for copy number...
variation, rare sequence detection, mutation detection and gene expression analysis. The ddPCR system provides single-copy PCR resolution to accelerate discoveries and new strategies for the research of genetic disorders, cancer, HIV, Tuberculosis, Thalassemia, viral and infectious diseases. Conclusion: In conclusion, the technologies like HPLC, Real time PCR and droplet digital PCR provided highly accurate diagnosis. The advanced technique like droplet digital PCR also offers additional benefits, including direct quantitation without requiring a calibration curve, minimal labor, rapid turnaround time, and decreased risk of PCR carryover contamination.

I25

ITGAM and lupus susceptibility: From genetic association to causal variant identification
Swapan K. Nath

Background and Aims: Systemic lupus erythematosus (SLE) is a complex, autoimmune disease with a strong genetic basis. Although, over 40 genetic associations have been identified through genome-wide and candidate-gene association studies, there is a major challenge identifying the causal variants and molecular mechanisms through which associated variants contribute to disease susceptibility. Using trans-ethnic mapping, we identified an ITGAM missense variant (rs1143679) strongly associated [P=3.60×10−9, OR=1.76, N=28,439] with SLE. ITGAM is a component of the MAC-1, which mediates leukocyte adhesion, migration and phagocytosis as part of the immune system. However, precise molecular mechanisms of this variant are incompletely understood. Methods: We used bioinformatics, gene expression and a series of in vitro and in vivo experiments to assess the molecular functions of rs1143679. Results: We used ENCODE data and discovered that the putative region is the most active region of chromatin regulation and transcription factor binding in ITGAM. Using luciferase assay, we showed that the risk allele carrying sequences act as enhancer for ITGAM. We quantitated ITGAM RNA and surface protein levels in monocytes from patients with each genotype, Transcript levels significantly decreased for the risk allele (‘A’) relative to the non-risk allele (‘G’), in a dose-dependent fashion. Using EMSA and allele-specific ChIP-assy, we identified differential bindings with several transcription factors like NFKB1, EBF1 and Ku70/80 in monocytes. Proximity ligation assay detected a long range interaction between Ku70/80 and RNA Pol-II. Conclusion: The rs1143679 is most likely to be a causal variant; the reduced expression is attributed to reduced interaction of these proteins with risk allele carrying DNA sequences. Therefore, inefficient interaction between Ku70/80 and RNA Pol-II may affect the expression of ITGAM. This two-pronged contribution (nucleic acid- and protein-level) of the rs1143679 risk allele to decreasing ITGAM activity provides insight into the molecular mechanisms of its potent association with SLE.

I26

Genetic and epigenetic causes of congenital heart defects
Uppala R

Congenital heart defect (CHD) is the most common type of birth defect, and affects close to 1% of all live births. Over 50% of children born with CHD will have one or multiple invasive surgeries in their lifetime. Every year, twice as many children die in the USA from CHD than from all forms of childhood cancers combined. The mortality rate of children with CHD-associated anomalies is 30%, and it approaches to 100% when chromosomal and other developmental anomalies are present. Over 40-50% of infants with CHD have accompanying birth defects involving neurodevelopmental, limb, muscle, defects and frequently are also susceptible to respiratory infections. Majority of CHD cases have no identifiable genetic abnormality, around 30% of CHD children are associated with chromosomal abnormality. Families with autosomal dominant, recessive and X-linked CHD have been reported; additionally many genetic syndromes have an association with CHD. About 80% of CHD are presumed to be multifactorial and arises through various combinations of genetic and environmental contributors. Among several candidate epigenetic mechanisms, DNA methylation may play an important role in the etiology of CHD. There are many known environmental risk factors including maternal risk factors and nutritional influence on epigenetics. We conducted a genome-wide DNA methylation analysis using an Illumina Infinium 450k human methylation assay in a large cohort of newborns who had various form of CHD including hypoplastic left heart syndrome, ventricular septal defect, atrial septal defect, pulmonary stenosis, coarctation of the aorta and Tetralogy of Fallot. Statistical and Bioinformatic analysis was performed followed by gene ontology analysis and functional enrichment analysis was done. The study identified significantly altered CpG methylation sites in many genes in affected subjects as compared to normal controls (either hypermethylated or demethylated). Using epigenetic analysis we were able to identify genes significantly involved in the pathogenesis of CHD.

I27

Confused Confucius!! The circle of complex disorders
Dwaipayan Bharadwaj

Phenotypes are not always a direct reflection of genetic inheritance. Unlike the monogenic diseases, the so-called “diseases of civilization” or complex diseases are multigenic, and they do not follow the mendelian inheritance pattern. Finding the root cause of these diseases have always been a major challenge in the field of biological research. In our lab, we have performed genome-wide association studies on complex diseases like Type 2 diabetes and childhood obesity in Indian population that yielded us many novel signals to validate further. However, all the genetic variants for type 2 diabetes in human from various populations across the globe have been cumulatively shown to explain only a small fraction (~7-8%) of disease risk. This interested us further to examine the potential reasons for this missing heritability that would help us to understand the etiology of type 2 diabetes in a better way. Through this presentation, we aim to illuminate the dark road of inexplicabilities of complex disorders through five case studies that are inquisitively picked up and analyzed from our experimental results from various lab projects.
Elucidation of genetic and cellular defect in neurodevelopmental and neuropsychiatric disorders

Dhanjilt Kumar Das

Neurodevelopmental and neuropsychiatric disorders are complex traits that result from multiple genetic determinants interacting with environmental factors to give rise to clinically diverse phenotypes. Neurodevelopmental disorders are associated with widely varying degrees of difficulty which may have significant mental, emotional, physical, and economic consequences for individuals. Among neurodevelopmental disorders, Rett syndrome (RTT) is an X-linked neurodevelopmental disorder, primarily affecting females. The prevalence is about 1 in 10,000 female births. Rett Syndrome is caused by mutations within methyl CpG-binding protein 2 (MECP2) gene. A total of 47 different MECP2 mutations and polymorphisms were identified in 32 patients. A total of 70 patients remained without molecular genetic diagnosis that necessitated further search for mutations in other genes like CDKL5 and FOXG1 responsible for causation of Rett phenotype. We also screened for mutation in CDKL5 gene and identified 5 mutations in 4 different atypical cases. Further investigation of FOXG1 gene indicated a frameshift novel mutation in one atypical patient. We have also identified an interesting case having mutation in MECP2 gene and 15q11.2-13.1 deletion also present. This is the first case report having MECP2 mutation and 15q11.2-13.1del together. Schizophrenia is a common neuropsychiatric disorder. It is a hereditary disorder (~80%) with monozygotic twin concordance rates estimated to be as high as 40–65%. There have been significant efforts to identify possible common and rare genetic variants that might explain susceptibility to this disorder. Recent genome-wide association studies have confirmed a substantial risk of 15q11.2del associated with SZ. Copy number variants at 15q11.2 are also associated with intellectual disability, autism in addition to schizophrenia (SZ). This region, spanning BP1-BP2 is part of the Angelman/Prader-Willi region and encodes CYFIP1, NIPA1, NIPA2 and TUBGCP5 genes. From animal models, all four genes are important for brain morphogenesis. As these genes have not been investigated in human neurodevelopment, we have analyzed gene expression and neuronal morphology in differentiating induced pluripotent stem cells (iPSCs) from individuals with the 15q11.2 deletion. We have generated iPSCs line from a proband and his mother, both bearing a deletion at 15q11.2 and were compared with an unrelated control without deletion. The proband was also diagnosed with SZ, but not his mother. The deletions were identified using qPCR and array-CGH. Fibroblasts derived from skin biopsies were reprogrammed conventionally with Sendai viral vector expressing transcription factors Sox2, c-Myc, Klf4 and Oct4 (Yamanaka factor). Following quality control, the iPSCs were differentiated into neural rosettes and neuronal progenitor cells (NPCs) and then to glutamatergic neurons. The iPSC derived neurons stained for markers of glutamatergic neurons (vGLUT1, NR1, Calbindin and CART) and expressed functional ligand-gated channels. Since, the dendritic spine architecture were shown to be altered in Schizophrenic post-mortem brain, we analysed dendritic spine morphology in iPSCs derived neurons carrying the deletion. Reduced expression of four CNV-related genes were observed in iPSCs, neural progenitor cells and iPSC derived neurons derived from the mother and the offspring, compared with control cells. CNV bearing iPSC derived neurons also showed decreased levels of CYFIP1 protein, reduced dendritic spine number and density, and enhanced proportions of immature-to-mature spines. The BP1-BP2 15q11.2 deletion is associated with reduction of mRNA expression of four deleted genes during iPSC to neuronal development and altered dendritic spine architecture. Further investigations are required to see whether haploinsufficiency of CYFIP1 causes developmental abnormalities that lead to the dendritic spine alterations.

Immunological basis of schizophrenia: A diagnostic and therapeutic viewpoint

Moinak Banerjee

Schizophrenia is a severe and debilitating mental illness, affecting about seven to eight individuals per 1,000 of the general population. It is characterized by three broad spectrum behavioural domains such as positive symptoms, negative symptoms and cognitive domain. These behavioural domains tend to vary in their presentation based on ethnicity, culture or environmental conditions which might impact treatment and its outcome. These facts makes Schizophrenia a complex disorder which involves multiple genetic factors with mild to moderate effect and non-genetic risk factors like environmental and psychological assaults, that alter the brain’s chemistry. Numerous theories have been proposed regarding the cause of schizophrenia, ranging from developmental or neurodegenerative processes or neurotransmitter abnormalities to infectious or autoimmune processes. Schizophrenia patients experience elevated morbidity from infectious and auto-immune diseases; in addition, the factors that exacerbate schizophrenic symptoms also tend to impair immune function. Even the antipsychotics used in treatment have also been identified to alter immune regulation. Immune dysfunction can be proposed to be the common denominator for connecting multiple hypotheses in Schizophrenia with mild to severe effects, depending on the environmental cues. Cytokines can act as signals between cells to regulate the immune response to injury and infection. Besides providing communication between immune cells, they can also play a role in signalling the brain to produce neurochemical, neuroendocrine, neuroimmune, and behavioral changes. They also strongly influence the dopaminergic, noradrenergic and serotonergic neurotransmission Therefore, cytokines being the key regulator of immune/inflammatory reactions and brain development emerge as a common pathway for genetic and environmental components of schizophrenia in monitoring diagnostic and therapeutic response. The role of cytokine in disease association and treatment response with specific reference to schizophrenia will be discussed.
Pharmacoepigenomics of malaria and its relevance
H. Gupta

The molecular basis for the pathogenesis of malaria remains to be completely understood. Cytokines play an important role in the progression of malarial pathogenesis. Entry of malaria parasite in patients induces the synthesis of inflammatory cytokines such as TNF-α, IL-1, IL-6 and IL-10. Altered gene expression of cytokines known to be regulated by epigenetic mechanisms and cytokines by themselves may induce epigenetic changes. These may include changes in DNA methylation as well as miRNA expression. P-glycoprotein encoded by ABCB1 gene is class of drug transporter which has been found associated with drug resistance for many diseases including malaria. Malaria parasite invasion is facilitated by activation of the GPCR signaling pathway and also by the β2-adrenoreceptor protein encoded by ADRB2 gene. However, available knowledge on their regulation is incomplete. We hypothesized that malaria susceptibility or its severity may be influenced by the SNPs in ADRB2, ABCB1 and other GPCR genes; and epigenetic changes at the critical CpG sites. We tested for global DNA methylation levels of human hosts using HPLC method. Promoter DNA methylation analysis of ADRB2 and ABCB1 genes were also performed using Bisulfite DNA sequencing. Significant SNP and DNA methylation differences were noticed in our study among cases and controls. The study provides evidence for the proposed role of ABCB1 and ADRB2 mediated mechanisms in etiology of malaria susceptibility and drug response, for clinical and therapeutic application. This study is the first to report altered DNA methylation patterns in distinct malaria severity conditions.

Optimal dosing of warfarin in indian population: Contribution of genetic polymorphisms
Shrimati Shetty

The narrow therapeutic range of warfarin and the inter-individual variation are the two important factors which necessitate warfarin pharmacogenomic studies with an ultimate objective of individualized treatment regimens based on the genotype of the patient. The pharmacodynamic and pharmacokinetic parameters of warfarin are largely influenced by genetic polymorphisms in two genes namely VKORC1 and CYP2C9. As there is a wide ethnic variation in the distribution of these polymorphisms, the mean warfarin dose also varies across populations. The African Americans need the highest dose of warfarin, followed by Caucasians and Asians. Among Asians again there is a wide discrepancy in the dosage prescribed; Indians need a higher dose of warfarin as compared to Japanese and Chinese. Differences in the allele frequencies have also been observed between Northern and Southern regions of the country. In addition, genes in the warfarin – vitamin K interactive pathways, vitamin K-dependent clotting factors were also studied. These genes include CYP4F2, CYP2C18, CYP2C19, APOE, EPHX1, CALU, GGCX, PROC, factor II, factor V, factor VII, Factor IX and NR112. Unlike CYP2C9 and VKORC1 the association of these genes to warfarin dose variation are not strong and the effects are too small to have any significant clinical use. Several new anticoagulants have been put to clinical use, for instance oral thrombin inhibitors (dabigatran), factor Xa inhibitors (rivoxaban); however, there are still certain issues like the absence of a simple test like PT-INR for dosage monitoring and the exorbitant cost of these products. Thus at least in the near future, warfarin will remain as the most prescribed oral anticoagulant in India as also other parts of the world.

Pharmacogenomics and drug discovery and development
Sanish

Pharmacogenomics is the study of the role of genetic inheritance in individual variation in drug response. Pharmacogenomics is moving from a candidate gene strategy to large scale approaches. This is in line with the new paradigm of linking a trait to (a) pathway(s) rather than to single genes. In addition, breakthroughs in genomics offer a non-a priori assessment of implicated genes, expanding the possibilities in pharmacogenomics research. The key issues that led to pharmacogenomic studies are lack of efficacy and serious adverse reactions. The potential benefits expected are (i) drugs may be tailor-made for individuals (ii) drugs with greater efficacy and safety (iii) advanced screening for disease and better vaccines (iv) improvements in the drug discovery and approval process and (v) decrease in the overall cost of healthcare. Pharmacogenomics studies are in use by clinical trials researchers for variations in cytochrome P450 genes to screen and monitor patients; by pharmaceutical companies to understand the drug metabolism by variant forms of CYP enzymes; and by doctors to screen patients for the deficiency of thiopurines methyl transferase, and its activity is monitored to determine appropriate thiopurine dosage levels. Personalized medicine—the right drug for the right patient—is often talked about as the future, maybe the only future, of the drug industry. The application of pharmacogenomic approaches during drug development is an evolving process that begins with discovery and continues through confirmation of clinical efficacy and safety outcomes. PGx studies can contribute to a greater understanding of interindividual differences in the efficacy and safety of investigational drugs. PGx research depends on the collection and use of biological samples to generate data. Across the drug development continuum, genomic data may be used for several purposes, including (1) identifying the basis for PK outliers and intersubject variability in clinical response; (2) ruling out the role of polymorphic pathways as clinically significant contributors to variable PK, PD, efficacy, or safety; (3) estimating the magnitude of potential drug–drug interactions; (4) investigating the molecular or mechanistic basis for lack of efficacy or occurrence of adverse reactions; and (5) designing clinical trials to test for greater effects in specific subgroups. Recent research in PGx and drug development has also focused on trial design or statistical analysis considerations for randomized, controlled clinical trials (early and late phase) that are intended to draw definitive conclusions about treatment.
Microdeletion syndromes are genomic disorders characterized by small & variable chromosomal deletions (<5Mb) in which many genes are involved. They are frequently associated with multiple congenital anomalies, dysmorphic features with or without mental retardation. The practice of these technologies in future pregnancies especially in the cases having multiple congenital anomalies/dysmorphic features with or without mental retardation. The practice of these technologies in precise characterization of chromosomal alterations in several case scenarios will be presented and discussed.

I33
Understanding of chromosomal rearrangements: A challenge to geneticist
Frenny Sheth
Patients with congenital dysmorphic features and intellectual disability warrant cytogenetic investigation to identify causative chromosomal alteration or segmental aneusomy. Conventional G-banding provides whole genome coverage with a resolution limit of 5-10 Mb, which excludes diagnostic analysis of patients with sub-microscopic genetic alterations. On the other hand, high resolution FISH techniques, allow investigating sub-microscopic regions [gain/loss; 3-5 Mb] but the analysis is restricted to a specific locus. Availability of array-Comparative Genomic Hybridization (a-CGH) technique which incorporates the ability to interrogate the entire genome with a resolution of 20-150 Kb allows comprehensive characterization of structurally altered chromosomes. Identification of chromosomal breakpoints could help in mapping causative genes or regulatory sequences whose function is disrupted due to the chromosomal alteration; thus aiding in genotype-phenotype analysis and calculation of the recurrent risk for future pregnancies especially in the cases having multiple congenital anomalies/dysmorphic features with or without mental retardation. The practice of these technologies in precise characterization of chromosomal alterations in several case scenarios will be presented and discussed.

I34
Assessment of DNA microarray for evaluation of microdeletion syndromes
Ashutosh Halder
Background: Microdeletion syndromes are genomic disorders characterized by small & variable chromosomal deletion (<5Mb) in which many genes are involved. They are frequently associated with multiple congenital anomalies, copy number variations and loss of heterozygosity. The phenotype is the result of haploinsufficiency of genes in the critical interval. Fluorescent In-Situ Hybridization (FISH), Multiplex Ligation-dependent Probe Amplification (MLPA), Quantitative Fluorescent Polymerase Chain Reaction (QFPCR) and Array (microarray) Comparative Genomic Hybridization (aCGH) techniques are commonly used for precise genetic diagnosis of microdeletion syndromes. Objective: This study was conducted to assess the role of DNA microarray in the evaluation of suspected microdeletion syndrome. Material & Method: This study was comprised of 319 cases of suspected microdeletion syndromes. There were 193 cases of suspected 22q11.2 microdeletion syndrome, 49 cases of suspected Prader Willi syndrome, 34 cases of suspected William syndrome, 5 cases of suspected Tricorhinophalangeal syndrome and 38 cases of other microdeletion syndromes (Miller Dieker, Wolf Hirschhorn, retinoblastoma, etc). All cases were evaluated initially with FISH with specific probes. aCGH was carried out in all 150 cases using 300K DNA bead array on Illumina platform. Result: FISH was confirmatory in 36 cases only (11.3%). These were 22 cases of 22q11.2 microdeletion, 8 case of Prader Willi, 5 case of William and 1 case of TRP syndrome. There were 13 cases (36%) of mosaicism (6 cases of 22q11.2 microdeletion, 4 case of Prader Willi, 3 case of William syndrome). Microarray was picked up all FISH positive cases as well as smaller specific deletions, duplications and many more pathogenic/likely pathogenic CNVs. However, aCGH was filed to pick up mosaic cases with<50% deleted cell line. Clinically suspected specific locus CNV was detectable in approximately 26.3% cases and unsuspected CNV in another 14.4% cases by aCGH. Variation in deletion size, break points, other CNV and loss of heterozygosity were evident. Conclusion: We conclude that FISH in this format should not be the method of choice for clinically suspected microdeletion syndromes as cost, labor & time versus benefit is unjust. More strict clinical criteria should be followed. If clinical diagnosis is uncertain or doubtful then microarray should be first screening test. However, microarray is likely going to miss mosaic cases, if deleted cell lines concentration is less than 50%. Furthermore, aCGH provides associated CNVs (often many) as well as loss of heterozygosity and their significance is unknown at present. We think whole genome screening by aCGH should be carried out to investigate genotype phenotype co-relation/assessment so that consensus guideline can be derived for interpretation and counseling patient in coming years. FISH may be used for detecting mosaicism, screening family members and prenatal diagnosis in proven family.

I35
Indigenous or outsourcing? make in india molecular diagnosis of fragile x syndrome
Sarita Agarwal
Background: Fragile X Syndrome (FXS) is the second most common type of inherited intellectual disability after Down’s syndrome that cause serious adverse effect on the affected individual and his family members. It is mostly caused due to silencing of FMR1 (Fragile X Mental Retardation) gene due to hyper expansion of trinucleotide repeat (CGG) in its 5’ UTR region located at Xq27.3 chromosome. FXS is associated with mild to severe intellectual disability, social anxiety, attention/deficit hyperactivity disorder, autism spectrum features, and various physical and medical characteristics as caused by mutated FMR1. Presence of a FM (full mutation) allele causes FXS, but the carriers of PM (premutation) alleles does not exhibit any of the characteristic phenotypic features associated with FXS. PM is more frequent in population as compared to FXS and occurs in 1 in 113–259 females and 1 in 260–810 males. PM alleles can expand to full mutation in following generations, which signifies the screening of PM in the pregnant women
to offer genetic counselling if desired. **Aims and Objectives:**
The intention of the present study is to do molecular screening of FMR1 gene by using TP PCR technique. **Materials and Methods:**
Genomic DNA was extracted from 75 subjects, which included 30 clinical suspects of FXS (both male and female) and 45 pregnant females. After bisulphite treatment the samples were subjected for methylation studies and the TP-PCR amplicons were subjected to fragment analyses and results were documented. **Results:**
Out of 30 clinical suspects, 9 were found to have full mutation and a single female was found to be having permutation allele. Extended family screening was done for this female subject and it was deduced that she got permutation allele due to maternal transmission. Also in one of the full mutation subject family screening was done and his mother was found to have permutation allele. This permutation allele has expanded to full mutation in the concerned subject. Out of 45 pregnant female screened for FMR1 mutation none were positive. **Conclusions:**
Present study validates the use of TP-PCR as a robust, rapid, sensitive and cost effective diagnostic tool for characterising FMR1 gene (pre-mutation or full-mutation) against the kits available in market. The risk couples could be offered for prenatal diagnostic options and genetic counselling.

I36
Intellectual developmental disorders: A molecular cytogenetic update
Rajasekhar M

Background:
Cytogenetics has been the gold standard and the first tire for the screening of chromosomal rearrangements related to intellectual developmental disorders (IDDs) since the 1970’s. The percentage of anomalies that can be screened using karyotyping alone accounts to >47% of all cases coming to the clinics. However, modern molecular technology has added to this detection percentage to an extent to which the detection of Copy Number Variations that contribute to IDDs, its pathogenesis and the classification of the corresponding genes which have been thought to be unknown have become possible.

Methodology:
Here, we report the screening of 385 children with intellectual developmental disorders using conventional cytogenetics followed by molecular screening using Multiplex Ligation dependant Probe Amplification (MLPA) employing probes for multiple micro-deletion/duplication and subtelomeric regions. **Results:**
We detected gross chromosomal rearrangements in 184 cases which included Down syndrome accounting for majority of the cases and other abnormalities including like Edward syndrome, insertional inversion involving chromosome 1 and 2 and heteromorphic variant 15p+ and inversion 9qh. Further the samples which did not show chromosomal aberrations were subjected to MLPA and we found heterozygous microdeletions in 22 IDD related genes which were validated using RT-qPCR and FISH. **Conclusion:**
Hence our strategy was to supplement conventional cytogenetic analysis by MLPA currently and replace it in a diagnostic set-up in the near future. In our study, cytogenetic findings have showed normal karyotypes in ~52% of cases and with MLPA, and we detected an additional 10.9% of the patients with sub-microscopic abnormalities.

I37
Sickle cell anaemia- community control program for tribal population groups of satpuda hilly ranges from Nandurbar, Dist Maharashtra
Y.S.Prabhune, P.N.Dalvi, G.T.Kulkarni, S.L.Kate

During last 10 years of 20th Century we screened most of the tribal population groups from state of Maharashtra and found that Madia, Pardhan, Otkar and other tribal groups from Gadchiroli Dist. and Bhill and Pawara tribal population groups from Nandurbar District have higher prevalence of sickle cell disorder. (Heterozygous >20%). We identified three voluntary health organization i.e. SEARCH of Dr. Abhay Bang, LOKBIRADARI project of Dr. Prakash Amte and AMHI AMCHYA AROGYASATHI of Dr. Satish Gogulwar, trained their staff members and encourage them to undertake work on Sickle Cell Anaemia. There was no any NGO working on this problem from Nandurbar District, hence in 1998 Maharashtra Arogya Mandal established Community Control Program Centre in Satpuda hilly ranges (Nandurbar district) with help of local tribal youths. The centre is popularly known as Sickle Cell Dawakhana (Roshmal Budurk, Taluka Dhadgaon, Dist. Nandurbar.) We provide all the following facilities

- Accurate diagnosis
- Possible Treatment and follow up
- Population genetic surveys
- Health education
- Improvement in the quality of life (QOL)
- Genetic counselling
- Marriage counselling
- Prenatal diagnosis
- Research
- Training

We are working in this area for last sixteen years. We screened more than 1.5 lakhs tribal people and more than 2000 patients are under our medical supervision. Patients and parents are happy with our medical treatment and we have good response. Our ten point programme will be presented.

I38
A global perspective on the functional genomics of primary congenital glaucoma using next-generation sequencing
Subhabrata Chakrabarti

Background:
Primary congenital glaucoma (PCG) is an autosomal recessive disorder of the eye largely attributed to mutations in the CYP1B1 gene ranging from 20-100% worldwide. In India, PCG is largely attributed to 43% mutations in the CYP1B1 and to a small proportion across other glaucoma-related genes (MYOC, LTBP2 and FOXC1). **Aims and objectives:**
The present study aimed to identify novel genes and functionally characterize them in PCG cases that are devoid of mutations in the known genes. **Materials and methods:** From a large number of clinically well characterized PCG cases who were devoid of other mutations (n=321), ten trios consisting of an affected child along with parents born out of consanguineous marriages were selected for whole exome sequencing (WES).
The WES was performed on an Ion Proton platform (Life Tech) using the whole exome AmpliSeq chemistry. We specifically determined the potential homozygous candidate gene variant(s) segregating in the affected children, which are being replicated in the additional cohort (n=311). Further, the expression of these genes are being assayed by quantitative real time PCR and their interactions through bioinformatic analysis. **Results:** The overall sequence data revealed >50,000 variants for each trio. This was cleaned up following standard quality control methods, wherein, polymorphic variants reported in the dbSNP and 1000 genomes were excluded. Further filtering based onClinVar database, variant effects and homozygosity significantly reduced the number of potential variants (n~150). Hence, only the homozygous loci in the PCG affected children that were heterozygous in their unaffected parents were retained. Functional assessment based on bioinformatic analysis of some of these variants led to the identification of novel genes that may be involved in PCG and were absent in the normal controls. **Conclusions:** The different candidates genes including transcription factors, some of which have been earlier implicated in anterior segment anomalies. Pathway analysis of these genes have provided some interesting insights in delineating their precise role in PCG.

I39 Nutrient-mediated teratogenesis and risk of diabesity in Indians

Giriraj Ratan Chandak

India is known as the Diabetic Capital of the World and also suffers from the rare distinction of being capital of Low Birth Weight (LBW) in the World. This double burden is likely to provide an interesting link that can be exploited to restrain the ever-expanding burden of type 2 diabetes (T2D), metabolic syndrome and its related complications. Recent spurt of genome-wide association studies, mainly in Europeans has led to identification of many variants that predict risk of T2D; several of them are also associated with birth weight and other anthropometric parameters. Our studies in Indian population has interesting mix of results; some loci replicating, several others replicating with higher effect size and few not showing similar effect as identified in Europeans. The latter category comprise those which influence intermediate traits for T2D, such as obesity and insulin resistance. These observations provide an interesting link to the established phenotypic differences in Indians and Europeans, better known as “Thin-Fat Phenotype” for Indians. It is also established that this Indian phenotype characterized by less muscle mass and high fat percentage is present at birth and predicts future risk of cardiometabolic disorders. Such risk has been shown to be mediated through two interlinked pathways; Nutrient-Mediated teratogenesis and Fuel-Mediated teratogenesis. Strong evidence also exists that maternal hyperhomocysteinemia is risk factor for LBW, higher adiposity and insulin resistance. Since, Vitamin B12 is central to S-adenosyl methionine production, the universal methyl-donor to almost all kinds of methylation reactions in the cell, hence we have initiated attempts to understand the molecular mechanism of B12 action and genes/pathways influenced by B12 intervention, as a model of understanding molecular basis of Nutrient-mediated teratogenesis. I will discuss the advantages and limitations of genetic studies of type 2 diabetes, especially in Indians and present preliminary data to advance suggestions that epigenetic regulation of key genes may underlie the fetal programming of Diabesity and thus may be an interesting strategy to rein the epidemic of type 2 diabetes in Indians and other developing countries.

I40 Palaeolithic antiquity and continuity of Indian populations: Genomic and non-genomic evidences

V. R. Rao

Out of Africa expansion of anatomically modern humans and Palaeolithic continuity of the present day Indian populations is the most parsimonious explanation as of now, based on maternal and paternal haploid DNA lineages and high density autosomal DNA markers. Archaeological dating corroborate with DNA clock of this expansion to about 1, 60,000 ybp (years before present). The route of this expansion, whether north via Levant or south via horn of east Africa to Indian coast to east-Asia to euro-Asia is an intense debate. However, large amount of empirical data from India generated on complete mt DNA sequences of more than 3000 samples from 37 tribal populations by Anthropological Survey of India, irrevocable in support of the southern rout. Now, it is increasingly believed that the southern-rout is the only expansion by which modern humans moved out of Africa and peopled all other non- African continents. Further support to this tantalizing proposition, even pointing out that Indian populations have ancestral foot prints to Chinese, has come from high density DNA mapping of large number of populations from Asia-Pacific region by international collaborative study. While situating people of India as representatives of earliest anatomically modern human expansion that resulted in the peopling of the world, the Indian genetic data is also forth-with in explaining the socio-cultural and historical paradigms like Tribe, Caste, language categories, large scale north -west Indo-Aryan invasion etc. The results are emphatic that ancient genetic substratum and continuity resulted in sharing and Tribe-Caste continuum; language is later super-imposition and shifting of languages is a common phenomenon; large scale invasion which could have resulted in non-Indian genetic lineages in the hierarchical structure of Indian populations does not exist. DNA dating for Palaeolithic continuity in Indian scenario starts from 60-65 kybp (thousand years before present) and glacial –inter glacial climatic fluctuations could have affected the ancient anatomically modern humans largely surviving on hunter-gatherer subsistence. We do have populations like Jarawas, Onge and Sentinelese of Andaman and Nicobar Islands as direct descendents of human expansion, while all other populations share this ancient substratum. The paper finally discusses, the non-genomic evidences in terms of paleo-art and linguistics, that supports ancient human bio-cultural heritage of Indian populations.

I41 Darwin to DNA – Story of evolution retold

K.Ghosh

Darwin visited Gath pagers Island in HMS Beagles and changed the way we discuss biology. He found different animals, intermediate
Chapter; “Statement of Specific Principles for Human Genetics Participants (ICMR, 2006). The guidelines have a detailed follow the Ethical Guidelines for Biomedical research on Human blurred. Human genetics and genomics research in India should these often the distinction between research and practice is quite intellectual property rights etc are all very relevant and critical testing, postnatal screening, gene therapy, DNA banking, pre‑confidentiality, informed consent, genetic screening, prenatal abnormalities in pre- and postnatal cytogenetics as well as to analyze tumor cell chromosomes for cancer diagnosis and research. With the introduction of Fluorescence in situ hybridization techniques (FISH) and digital imaging techniques the resolution limit of chromosome banding was impressively improved. More recently the extension of the FISH technique by multicolor Spectral Karyotyping (SKY®), based on the simultaneous hybridization of all 24 chromosome-specific painting probes labeled with different fluorochrome combinations and using an innovative interference-imaging-spectrometer allowed the simultaneous differentiation of all 24 human chromosomes in 24 different colors and thus identifies even hitherto unknown or unclarified chromosomal aberrations unequivocally. In the last couple of years this development was complemented by automated imaging technologies ranging from metaphase finding systems, and FISH spot counters up to robotic high throughput machines which have streamlined the laboratory work and further improved the efficiency in cytogenetic laboratories. Despite its limited resolution, cytogenetic analysis techniques provide an

I42

Ethical Issues in Human Genetics Research
Roli Mathur
Research in human genetics is scaling new heights with the availability of state of the art technology, tools and tests. The availability of enormous genomic information has ethical implications in terms of its basic understanding, probabilities, translational value, sensitivity to societal values and actual applicability for improvement of human health. There are concerns about the ability to handle and decipher such information. Clinical research in human genetics is subject to general ethical considerations and additionally not only concern the individual alone but also the close family, even the extended family or community as a whole. Additionally the harm may not only be physical, but also psychosocial which may produce anxiety or damage familial relationship if the information gets into wrong hands or if the communication is improper. There is great importance of spoken words since genetic counselling is akin to therapy, genetic manipulations have consequences for the future, some unknown; issues such as pedigree analysis, confidentiality, informed consent, genetic screening, prenatal testing, postnatal screening, gene therapy, DNA banking, pre‑implantation diagnosis, pre-morbid diagnosis, forensic genetics, intellectual property rights etc are all very relevant and critical areas that need careful ethical considerations. In addition to these often the distinction between research and practice is quite blurred. Human genetics and genomics research in India should follow the Ethical Guidelines for Biomedical research on Human Participants (ICMR, 2006). The guidelines have a detailed chapter; “Statement of Specific Principles for Human Genetics

I43

Next Generation Human Genetics: Opportunities and Applications
Arindam Maityra
DNA sequencing represents a single format of information over which diverse and multiple biological processes can be projected for high throughput data generation. Over the last few years, disruptive advances in DNA sequencing technologies have enabled us to take on challenges in genomics, especially human genetics, at levels which are not only unprecedented but which were never thought of earlier. This has made us to radically rethink on our knowledge and understanding of human disease genomics, especially cancer genomics. It has democratized the field of DNA sequencing, enabling even labs outside large genome centres to undertake challenges in complex biological problems by generating reasonably high throughput sequencing data. These technologies and applications are rapidly evolving. I will provide an overview of some of these approaches along with some recent examples to show how this new wave of technology is being deployed to generate valuable information on human health and disease.

I44

Innovations in chromosome analysis using automated digital imaging technologies and multi‑color Spectral Karyotyping (SKY®)
Michael R. Koehler
For more than 40 years, chromosome banding has been the laboratory standard to detect and identify numerical and structural chromosome aberrations in pre- and postnatal cytogenetics as well as to analyze tumor cell chromosomes for cancer diagnosis and research. With the introduction of Fluorescence in situ hybridization techniques (FISH) and digital imaging techniques the resolution limit of chromosome banding was impressively improved. More recently the extension of the FISH technique by multicolor Spectral Karyotyping (SKY®), based on the simultaneous hybridization of all 24 chromosome-specific painting probes labeled with different fluorochrome combinations and using an innovative interference-imaging-spectrometer allowed the simultaneous differentiation of all 24 human chromosomes in 24 different colors and thus identifies even hitherto unknown or unclarified chromosomal aberrations unequivocally.
overview of the entire genome on a single cell level, which is still one of the major challenges of high resolution molecular methods such as Next Generation Sequencing (NGS) or array based tests, and therefore cytogenetics still maintains its position as a fundamental standard in genetic diagnostics. An overview about the applications of SKY®, its technique, and new developments in digital imaging techniques and their automation in cytogenetic analysis and research will be presented.

I45

Advances In Preimplantation Genetic Screening
Alan thornhill

The largest cause of failure for In-Vitro fertilization cycles is aneuploidy in embryos. As prospective mothers get older, their proportion of aneuploid oocytes increases, with over 40% of the oocytes being aneuploidy at age 35, rising to over 70% aneuploidy at age 45. Aneuploidy screening has been advocated as a tool to address this issue. Until a few years ago, the only available method was via FISH, but this method is highly subjective and has even been shown to be detrimental in randomized controlled trials. Over the last few years, several methods have been used to address this issue with array comparative genomic hybridisation, being the leading technology. The latest development is the use of massively parallel sequencing technology in aneuploidy screening.

Young Scientist Award

YSA1

Role of apoptosis in benign and malignant tumors of breast
Syeda Zubeda1,2,3

1Department of Genetics, Osmania University, 2Department of Genetics and Molecular Medicine, Vasavi Medical and Research Centre, 3Department of Genetics, Hyderabad Science Society, Hyderabad, India.

Aim: To study the role of apoptotic factors in benign and malignant tumors of the breast. Introduction: A swelling or lump in any part of the body due to abnormal growth of tissue is known as a tumor these may be non-cancerous (benign) or cancerous (malignant). Benign tumor cells grow only locally cannot spread by invasion or metastasis, whereas as Malignant cells invade neighbouring tissues, enter blood vessels and metastasize to different sites and are often fatal. Breasts may develop benign tumors commonly fibroadenomas or malignant ones known as carcinomas. Benign tumors are responsible for morbidity but the malignant tumors cause both high morbidity and mortality. Benign breast disorders have an incidence of 8.1 /1000 of adult female admissions where as in India, the annual breast cancer diagnosis rate has now reached to 23/100,000 women. Both benign and malignant tumors have the potential to proliferate. It is well established that cell proliferation and apoptosis occurs simultaneously in tumors [Bowen, 1998]. This balance between proliferation and apoptosis is very essential for the normal growth of tissue and an imbalance between these results may be pivotel in benign versus malignant tumors. Hence in the present work we have looked at apoptotic factors in fibroadenoma and malignant tumors of the breast. Apoptosis or programmed cell death, constitutes a systematic means of cell suicide during normal morphogenesis. Inappropriate apoptosis may cause various human diseases, making the control of apoptosis an important potential target for therapeutic intervention (Rudin, 1997). Apoptotic cell morphologies include membrane blebbing, nuclear and cytoplasmic condensation and appearance of apoptotic bodies (Schimmer et al., 2001).

Hypothesis: Apoptotic factors are up regulated in Benign tumors and down regulated in Malignant tumors. Objectives: 1) To screen for nuclear gene mutations specifically involved in apoptotic pathways such as AIF in exon 15 (F566A). 2) To evaluate the methylation status of AIF, Bcl-2 and Caspase-3 gene in benign and malignant tumor tissue and its adjacent normal tissue by Methylation Specific Restriction Assay. 3) To examine the transcript levels of the apoptotic factors AIF, Bcl-2 and Caspase-3 by quantitative RT PCR in both types of tumor tissues. 4) To study the expression of specific mitochondrial factors implicated in apoptosis like AIF, Bcl-2 and caspase-3 by Immunohistochemistry in fibroadenoma and breast cancer tissues. 5) To correlate the clinicopathological features like age, reproductive status, Estrogen Receptor [ER], Progesterone Receptor [PR] and Human epidermal growth receptor 2 [HER-2/neu] with fibroadenoma and breast cancer tissues. Subjects: 300 FFPE tissue samples which comprised of 100 breast cancer, 100 respective adjacent normal and 100 fibroadenoma are obtained. Clinical details along with family history and histopathological reports of the cases were collected after institutional ethical committee approval. Ethical Approval: Approval [VMRCE-3-2011] for genetic studies in Breast cancer was taken from the Ethics Committee of Vasavi Medical and Research Centre, Vasavi Hospital, Hyderabad. India. Methodology: DNA was extracted from 300 FFPE blocks by the salting out method. Methylation specific restriction assay (MSRA) was carried out by the method reported from our group earlier (Mohan et al 2006). Methylation status of promoter region of AIF, P2 promoter region of BCL2 gene and intronic CpG island of Caspase-3 genes were determined for both Benign and malignant tumors along with their adjacent normal tissues. RNA is isolated from the FFPE tissues of different pathologies of breast. SYBR® Green has been used as double-strand DNA-specific dye for real time PCR. Formalin-fixed Paraffin-
PCOS is a common, complex genetic disorder which affects 5-7% of women. It is the most common cause of anovulatory infertility characterized by irregular menses, abnormal gonadotropin dynamics with increased LH: FSH ratio. Hyperandrogenemia is one of the key features involved in its pathophysiology. Polycystic ovaries represent many small preantral follicles whose growths are arrested due to abnormal folliculogenesis. Insulin-like factor 3 (INSL3), a member of relaxin–insulin family is synthesized by the ovarian theca cells and its levels thus reflect the number of growing follicles. INSL3 is implicated to be an important intraovarian factor which regulates androgen production by the theca cells. Serum INSL3 levels are elevated in women with PCOS.

Statistical Analysis: The sub grouping of different protein expression and comparison of different demographical data such as age, stage, type of tumor, hormone receptors were made by t test using MedCalc software [12.2.1 version]. P values of < 0.05 were considered to be statistically significant. SISA online statistical software was used to derive the correlation co-efficient values with the expression ratios of different protein markers examined. **Results:** The mean age of breast cancer patients was 51.15 ±12.98 yrs and that of fibroadenoma patients is 28.755 ± 9.94 . Increased transcription and expression of AIF in the tumor tissue but less methylated status of the studied promoter region gives insight into the involvement of mosaicism in the product of the gene due to dosage compensation i.e involving one X chromosome inactivation since this gene is present on X chromosome. Enhanced transcription and expression of BCL2 in the tumor tissue correlated with the hypomethylated status of the p2 promoter region studied. Superior transcription and expression in the normal tissue correlated with the hypomethylated status of the intronic CpG cluster of Caspase-3 studied. **Significance of the work:** Analysis of three apoptotic genes i.e AIF, BCL2, CAS-3 has given more understanding of how and why apoptotic process that take place in normal, benign and malignant tissues of breast are different. **Conclusion:** Consequently, Bcl-2 immunopositivity may connote a more treatable form of breast cancer, thus accounting for its association with longer survival among women with breast cancer as well as in women with metastatic disease. **Acknowledgements:** I am thankful to UGC for providing the financial assistance to carry out the work. I thank MNJ, Indo American and Kamineni Hospital for kind help and cooperation. I thank Prof Y.R. Ahuja and Vasavi hospital, VMRC and its staff for their support.

YSA2

Investigation of insulin like factor-3 (INSL3) gene polymorphisms with PCOS susceptibility

Nuzhat Shaikh, **Nalini Shah**, and **Sraban Mukherjee**

1National Institute for Research in Reproductive Health, J.M. Street, Parel, Mumbai- 400012, India, 2Department of Endocrinology, Seth GS Medical College, Mumbai- 400012, India. Dr. Srabani Mukherjee, E-mail ID: srbanimuk@yahoo.com, s.nuzhat@yahoo.co.in

Background: Polycystic ovary syndrome (PCOS) is a common, complex genetic disorder which affects 5-7% of women of reproductive age. It is the most common cause of anovulatory infertility characterized by irregular menses, abnormal gonadotropin dynamics with increased LH: FSH ratio. Hyperandrogenemia is one of the key features involved in its pathophysiology. Polycystic ovaries represent many small preantral follicles whose growths are arrested due to abnormal folliculogenesis. Insulin-like factor 3 (INSL3), a member of relaxin–insulin family is synthesized by the ovarian theca cells and its levels thus reflect the number of growing follicles. INSL3 is implicated to be an important intraovarian factor which regulates androgen production by the theca cells. Serum INSL3 levels are elevated in women with PCOS.

Aims and Objectives: To investigate association of INSL3 polymorphisms with PCOS and its related phenotypes in a case-control based study setting in Indian population. **Materials and Methods:** A total of 496 women were recruited and screened for presence of INSL3 polymorphisms and further genotyped by direct sequencing. Complete phenotyping of study recruits in terms of clinical, biochemical and hormonal parameters were carried out. Genotype association with PCOS susceptibility and its related traits were carried out by chi square and regression analysis in respective case and control groups. **Results:** The rs6523 polymorphism in exon 1 of INSL3 showed significant association with PCOS susceptibility while the other polymorphisms failed to show such relationship. The rs6523 in exon 1 also showed significant association with hyperandrogenemia and hyperinsulinaemia related traits of PCOS. **Conclusions:** Variation in INSL3 gene does influence PCOS and its related phenotypes. Keywords: PCOS, genetic, polymorphism and INSL3.

YSA3

Human frontal cortex is enriched for G:C>T:A somatic transversions mediated by physiological oxidative stress

Anchal Sharma

CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi-110020

ABSTRACTS

Functional heterogeneity in different tissues is majorly contributed by dynamic nature of gene expression across different cell types, whereas, genome is usually considered to be static. However, somatic cells have a tendency to acquire genetic changes as they undergo multiple divisions during lifetime of an individual either due to exogenous mutagens or inherent infidelity of DNA polymerase. Such genetic changes are termed as somatic variations. This phenomenon is expected to introduce intra-individual variability at the DNA level and impact phenotypic outcomes – cancer being the most drastic one. In order to have better understanding of consequences of intra-individual genomic variability, it is a prerequisite to know the rate of accumulation of such genetic changes in different cell types of normal healthy individuals. Somatic variations have been shown to play very important role in many Mendelian diseases. Recently, there have been reports showing presence of somatic variations in different tissues of healthy individuals, but their extent and role is still underexplored. Somatic variations could be of great importance for an organ like mammalian brain which has high complex structural and functional organization, high plasticity, and limited regenerative capabilities. Apart from harboring large scale retro-transpositions, Copy Number Variations and aneuploidy, it has also been shown recently that DNA double strand breaks acquired by neurons due to physiological activity of brain contribute in learning and adaptability. But so far it has not been considered whether...
somatic changes at the resolution of single nucleotides may contribute to normal physiology of the human brain. Here, using exome sequencing of paired tissue samples, we show that the human brain, especially the frontal cortex, harbors somatic single base variations. Exome sequencing of paired. Samples from nine unrelated adults aged between 23 and 45 years was performed. Four pairs represented neuronal and non-neuronal parts of the brain - frontal cortex (FC) and corpus callosum (CC), respectively. These were from post-mortem, road accident victims. The other five pairs were DNA from blood and saliva of healthy individuals representing circulatory cell types with high turnover and therefore high likelihood of spontaneous somatic variations. We analysed about 1.5 billion reads from whole exome sequencing of these 18 samples with an average of 60 Mb coverage per exome and identified 473,336 single nucleotide variations (SNVs), with an average of ~50,000 sites per sample. The sequence depth for the samples ranged between 91x – 120x (average 100x) for the FC-CC samples and 25x – 86x (average 51x) for the blood-saliva samples. For technical confidence of the genotype calls all the samples were genotyped on Illumina Infinium 660W-Quad microarrays and we observed 98%-99.9% genotype concordance between the NGS and the microarray data. Sequence data from the paired brain samples were found to harbor somatic variations measuring up to almost 5% of the total variations. About 66% of these somatic variations in the brain are expected to lead to non-synonymous changes, and as much as 86% of these represent G:C>T:A transversion events. Further, up to 98% of the transversion events in the brain were mostly found in the frontal cortex (harboring GT and CA heterozygotes), whereas the corpus callosum from the same individuals harbor the GG and CC homozygous genotype. It is known that most common type of lesion found on DNA as a result of oxidative stress is 8-OHdG, modified adduct of deoxy guanosine, which can mis-pair with adenine and in further rounds of replication it can lead to G>T and C>A transversions on DNA. Given this background we investigated the possibility that the higher rates of transversion events in cortex relates to higher oxidative stress. In support, we found significantly higher amount of 8-OHdG, modified adduct of deoxy guanosine, which can lead to transversion events at G>T and C>A transversions on DNA. This could represent either a directed selection of genetic variations in these pathways or increased susceptibility of some loci to oxidative stress. Upon analysis at the amino acid level, it was observed that out of all the non synonymous changes that are possible due to G:C>T:A variations at each of the three codon positions, Asp>Tyr and Glu>stop changes were much more frequent than expected by chance, constituting up to 21% (11% and 10% respectively; p value = 0.0004 and 0.004 respectively) of all non-synonymous changes. We found a bias for Adenine to be present immediately 3’ of the somatic G>T sites. Based on this observation and supporting literature we speculate that the observed amino acid bias of the somatic sites towards Asp (GAC/GAT) > Tyr (TAC/TAT) and Glu (GAA/GAG) > Stop (TAA/TAG) changes might have been contributed by the nucleotide sequence context of the G:C>T:A sites. Thus, in this study we show that normal human brain, especially the frontal cortex, is enriched for somatic SNVs with a clear bias for G:C>T:A transversion events most likely brought about by oxidative stress and that these changes likely contribute to neuronal development and plasticity. Our results also indicate that a natural metabolic stress that otherwise would be damaging for the cell, in moderation can also increase the diversity of neuronal genomes and be beneficial for the organism.

YSA4

Deregulation of immunogenetic factors in Type 2 Diabetes Mellitus patients with impaired wound healing.
Khankiya Singh
Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi – 221005.

Wound healing is a dynamic process in which cells, tissues and structure damaged by any injury are restored. A wound healing cascade requires a perfect orchestrated system for proper healing of wounds. The inflammatory phase of wound healing is a vital phase in which pathogenic microbes are encountered along with the repairing of tissue. But this inflammatory phase should be short, self resolving and perfectly controlled. Prolonged inflammatory stage may abrogate normal healing and finally transform it into non healing chronic ulcers. The involvement of immune mechanisms also plays an important part in the process of wound healing. Toll like receptor 9 (TLR9) is one such pattern recognizing receptor (PRR) which is expressed primarily by subsets of B cells and dendritic cells in humans and is involved in both systemic as well as local inflammatory responses. It recognizes damage associated molecular patterns (DAMPs), for instance, S100A8 produced during tissue necrosis and acts by releasing a variety of proinflammatory cytokines like interleukin 8 (IL8). Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of myeloid cells comprising of macrophages, granulocytes, dendritic cells and other myeloid cells at different stages of differentiation which function as immunosuppressive agent by nullifying the effect of proinflammatory cells. Type 2 diabetes mellitus (T2DM) has its role to play in each and every step of wound healing as persistent hyperglycemic condition generally increases the inflammation through activation of TLRs and results in the spillage of the inflammatory phase into the proliferation phase. This enhanced inflammatory phase in diabetic wound may be contributed by TLR9 mediated signaling. S100A8 also add up to the inflammation by mediating the release of IL8 and is associated with the translocation of the transcription factor NF-κB. In the present work we hypothesized that low levels of immunosuppressive cells like MDSCs and increased expression levels of TLR9 and its proinflammatory signaling molecules like S100A8, IL8 are few causes of persistent inflammatory phase in chronic wounds like diabetic foot ulcer (DFU) and may contribute to
impaired wound healing in T2DM patients. Levels of TLR9 and its signaling molecules were analyzed in 84 diabetic wound tissue samples and 8 non diabetic control wound tissue samples by semi quantitative RT-PCR, quantitative RT-PCR, immunohistochemistry (IHC) and western blot. Systemic levels of CD11b+ CD33+ dual positive MDSCs were analyzed by flow cytometry. The analysis of semiquantitative RT-PCR data indicated that the TLR9 mRNA expression was significantly upregulated in the lower extremity wounds of DFU patients compared to that of control wounds (p value=0.03, t = 2.21). RT-qPCR analysis further validated the upregulation of TLR9 in diabetic wounds compared to control wounds (p value= 0.04, mean log (fold change) = 0.98, Standard error of mean=0.11). The expression of TLR9 mRNA was found to increase with the grade of wounds on Wagner’s scale (p value < 0.001, R2 = 0.196). The infection status of wound was also a regulatory factor for the expression of TLR9, which was found to decrease significantly in the presence of infection (p value = 0.01, t = 2.58, R2 = 0.07). IHC expression analysis among groups also suggested significant difference of TLR9 between the wound biopsies of DFU cases and controls. The findings of IHC results were validated by western blot experiments using antibody against TLR9. A similar upregulation of TLR9 proteins was also found through western blot analysis (p value <0.01, t = 4.27).

We also found that TLR9 protein was truncated in some cases of DFU patients and was present in 3 fragments while the TLR9 was intact in all of the wound samples of non diabetic wounds. We have also checked the expression levels of upstream and downstream molecules of TLR9 signaling pathway. The expression level of S100A8 protein, a DAMP, that brings about its proinflammatory role through TLR9 mediated signaling, was also found to be elevated in diabetic wounds compared to control wounds (p value = 0.003 by semi quantitative RT-PCR and p value = 0.01 by quantitative RT-PCR) which was further validated at protein level by western blot analysis. The expression levels of S100A8 was also dependent upon the grade of wound severity on Wagner’s scale and was dependent upon the infection status of diabetic wounds, expressing more in infected wounds compared to sterile wounds. The downstream molecule IL8 expression was also significantly higher in diabetic wounds compared to control wounds (p value = 0.04, t = 2.04 by semi quantitative RT PCR and p value = 0.03, t = 2.31 by quantitative RT PCR) but was not dependent on the wound grade or wound infection. Systemic mRNA expression level of S100A8 and IL8 were also higher in diabetic individuals with impaired wound healing compared to controls. The systemic levels of MDSCs were low in diabetic individuals compared to controls. Among T2DM patients the levels of MDSCs were higher in DFU subjects compared to non ulcer subjects. The levels of MDSCs were directly correlated to the infection status of the wound and DFU cases with infected wounds displayed an increase in the MDSCs levels compared to non infected wounds. Our study suggested that the expression level of TLR9 gene was higher in diabetic wounds compared to control wounds both at transcriptional and translational level. The increase in expression of TLR9 with the increase in wound grade suggested that the expression level of TLR9 directly modulates the severity of diabetic wounds. This finding may be supported by the neurotoxic effects of TLR9. Levels of proinflammatory proteins S100A8 and IL8 transcript were also found to be higher in diabetic wound compared to control wounds. Systemic MDSCs levels were drastically reduced in the T2DM subjects compared to control subjects. DFU subjects also had low levels of MDSCs but their levels were higher as compared to T2DM subjects because of the presence of infection in the wounds of DFU subjects. Hence, in this comprehensive study we have clearly shown that there is an extended inflammatory condition in diabetic wounds mediated by TLR9 and its signaling partners with the lack of MDSCs.

In conclusion, the upregulation of immune system derived proinflammatory molecules in combination with lower levels of anti-inflammatory cells may bring about the impairment of wound healing in T2DM subjects.

Key words: T2DM, Wound healing impairment, Toll like receptor, TLR9, S100A8, IL8, MDSC.

YSA5

CETN1 variations cause idiopathic male infertility

D V Sudhakar

Centre for Cellular & Molecular Biology, Hyderabad

Centrins are calmodulin-like, EF-hand containing calcium-binding proteins that are found in all eukaryotic cells from yeast to mammals. Centrins are encoded by 3 homologous genes (CETN1, CETN2, CETN3) in humans. The expression of centrin-1 (CETN1) is testis-specific, spermatogenic cell-specific and developmental stage-related. Our previous studies on several Y-chromosome, autosomal and mitochondrial genes revealed 25% of genetic causes responsible for male infertility. Therefore, our aim was to identify additional genetic factors that are associated with male infertility. We collected testicular biopsy from 6 obstructive and 5 Non-obstructive Azoospermic (NOA) men, isolated mRNA and performed gene expression analysis using Affymetrix array (2.0). We found several genes were differentially expressed, of which centrin was one among the highly down-regulated genes in NOA individuals. Moreover, recent studies have shown that Cetn1 (-/-) male mice were fertile. Hence, we selected this gene for further studies. We have sequenced the coding region of CETN1 in ethnically matched 875 fertile (Azoospermic, Oligospermic and Oligoaesthenoteratozoospermic individuals) and 552 fertile Indian men and found five nucleotide substitutions in the entire CETN1 gene; of which one was 5’UTR variant g580393C>T (rs 367716858), one each was synonymous (rs114739741), non-synonymous (rs61734344) and two 3’UTR variants; g.581123T>C (rs568365) and g.581199_581200 delTGTTInsaAGAGA (novel). Non-synonymous nucleotide substitution (rs61734344) was found to be strongly associated with male infertility (PCorr<0.005), replacing Methionine with threonine (pMet72Thr) in highly conserved region of CETN1 protein. Functional characterization of the above non-synonymous mutation (p.Met72Thr) was carried out using wild type and mutant proteins (overexpressed). Biophysical Properties of the wild and mutant CETN1 proteins were...
studied using various approaches like Circular Dichroism, ANS Fluorescence and Iso Thermal Titration Calorimetry (ITC). These studies revealed that the mutant protein (p. Met72Thr) was less structured and had considerable differences in the surface properties like hydrophobicity. ITC study showed that mutant protein’s (p.Met72Thr) ion binding thermodynamics and calcium binding affinity were different compared to wild type protein. Since, the mutant protein’s spectroscopic and thermodynamic properties were hampered, we predicted that the mutation could probably lead to the compromised physiological functions of centrin1, which is a calcium sensor. In addition to the above said Non-synonymous substitution, we found a 5’UTR mutation, g5803933C>T (rs367716858) which is also associated (Pcorr=0.011) with male infertility in Indian infertile men. This is the first study on CETN1 gene mutations and their association with human male infertility.

YS6

Genetic epidemiology of pharmacogenetic variants associated with Warfarin and Clopidogrel in North Indians

Anil K Giri

CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi-110025

Aims: The genetic variations in the genes involved in metabolism of pharmacogenetic drugs influences the individual’s response to drug. Population-scale genome-wide genotype datasets provides an opportunity towards building allele frequency maps which could be potentially useful to understand differences in drug response. Methods: We mined a cross-sectional population-scale genome-wide dataset of 2128 Indo-Europeans residing in North-India enrolled as member of Indian Diabetes COnsortium (INDICO) for presence of variants associated with pharmacogenetics of Warfarin and Clopidogrel. Results: We determined allelic frequency map of genetic variations involved metabolism of Warfarin (CYP2C9*3, CYP4F2*3, VKORC1 (-1639G>A) and Clopidogrel (CYP2C9*2, CYP2C9*3, P2RY1 ABCB1, CYP1A2, CYP2C19*2C, CYP3A5 and PON1) among various regions of North India. The geographical distribution pattern of genetic variants (CYP2C9*3, CYP4F2*3, VKORC1 (-1639G>A) affecting Warfarin metabolism showed an increased trend of extensive metabolizers with a concomitant decreased trend of poor metabolizers of Warfarin from Himalayan region to Gangetic region. Allelic distribution of VKORC1 (-1639G>A) showed a greater degree of variation across North-Indians. Our analysis relating to genetic variants affecting Clopidogrel responsiveness reveals significant differences in population-scale allele frequencies between Indians and global-population. Indians had a higher allele frequency for variants in CYP2C9*2, CYP2C9*3 and P2RY1 genes whereas lower frequency for ABCB1, CYP1A2, CYP2C19*2C, CYP3A5 and PON1 compared to global-population. Further, study proposed a model to explain the higher prevalence of Clopidogrel metabolizers in North-Indians. Conclusions: This is the largest population-scale genetic epidemiological study providing population-level allele frequencies that could be potentially valuable to clinicians to rationally plan appropriate dosage for therapy in resource-poor condition.

YSA7

Abnormal complement activation leads to pathological neovascularisation in subjects with Retinopathy of Prematurity

Sonika Rathi

Prof. Brien Holden Eye Research Centre, Smt. Kannuri Santhamma Centre for Vitreo Retinal Diseases, Jasti V Ramanamma Children’s Eye Care Centre, L V Prasad Eye Institute, Hyderabad, India

Purpose: Retinopathy of Prematurity (ROP) is a proliferative retinal vascular disorder and the leading cause of blindness in premature children worldwide. It occurs in prematurely born infants of low birth weight (<1500 g) and low gestational age (<32 weeks). More than 50% of premature infants weighing less than 1250g at birth show evidence of ROP, and about 10% of the infants develop severe ROP. ROP is a progressive as well as self limiting disease, primarily characterized by impaired retinal vascular development, which may progress from stage I to V i.e., from vaso-obliteration to abnormal retinal vascular proliferation causing retinal detachment and finally leading to severe visual impairment. In some premature infants ROP regresses spontaneously but in some infants in spite of providing same antenatal and prenatal condition, it progresses to severe stages. The reason behind the progression of this disease only in a subset of premature babies is still not clear. Therefore the present study aims to find the biomarkers which are responsible for the progression of this disease. Although there are evidences for the genetic susceptibility of ROP, the underlying molecular mechanisms are unclear. Hence, we undertook a comprehensive analysis of candidate genes involved in the development of early retinal vasculature, neurodevelopment, inflammation and regulation of angiogenesis, in ROP-affected babies to identify genetic variants conferring disease susceptibility. Additionally, functional analysis were undertaken to substantiate the genetic data. Methods: Initially, intragenic variants (n=384) spanning 27 candidate genes were screened in a cohort of 400 premature babies that included clinically well characterized cases of ROP (n=200) and unaffected controls without ROP (n=200). Screening was accomplished by customized genotyping followed by validation through resequencing. Allele and genotype frequencies, linkage disequilibrium and haplotype analysis were done to delineate the ROP-associated variants. Furthermore, the vitreous humor levels of 27 growth factors and genes involved in angiogenesis were assessed in patients with advanced stages of ROP (n=30) and congenital cataract (n=30) by multiplex bead array method to assess the concordance between the protein expression and genetic association data. Differentially expressed protein in vitreous were further validated by western blotting and zymography while cells in vitreous were detected by H&E staining and immunofluorescence. Results: There were no deviations from Hardy Weinberg equilibrium for these 384 single nucleotide polymorphisms (SNPs) among the normal controls (p>0.05). There was a significant difference
in the alleles and corresponding haplotype frequencies of few intragenic SNPs in TSPAN12, CFH, C2/BF, IHH, and MMP9, between cases and controls that withstood Bonferroni correction for multiple testing (p=1.3x10^-4). Variations in the other genes (OPTC, EPAS1, PRELP, AGTR1 GP1BA, VEGFA etc.) did not exhibit any association to ROP. The associated SNPs in CFH and C2/ BF genes conferred a significant risk and protection to ROP, respectively, as observed in AMD. Of the 28 analytes evaluated, 21 were detectable in the vitreous humor samples. Patients with ROP exhibited significant elevations in MMP9 (p=0.035), CFH (p=0.002), C3 (p=0.006), C4 (=0.0009), Prealbumin (p=0.012), SAP (p=0.026), APO A1 (p=0.002) and APOC3 (p=0.006) compared to the controls. No significant differences were observed in vitreous humor concentrations of 14 other proteins between patients and controls (p>0.05). These results were further validated by western blotting that further provided interesting insights on their role in ROP development. Zymography revealed the activation of matrix metalloproteinases (MMP2 or MMP9) in ROP patients but not in controls. Vitreous staining with CD68 revealed the presence of activated macrophages/microglia while H&E staining showed the presence of inflammatory cells only in ROP vitreous but not in controls. Conclusions: The present study highlights the new mechanism by which activation of complement pathway and ECM components in ROP patients. Presence of macrophage in ROP vitreous suggesting that the activation of complement component further activates macrophages that results in the secretion of proangiogenic cytokines and ECM molecules which in turn leads to angiogenesis in ROP. This results illustrate the new mechanism by which activation of complement pathway and ECM components leads to aberrant neovascularization in ROP. While the activated macrophages may serve as a link between complement activation and the balance of angiogenic and anti-angiogenic factors. Present study, thus concludes that the activation of the complement components in ROP patients may have a role in neovascularisation. Therefore, the complement pathway specifically C3 molecule not only act as biomarker but can be used as therapeutic target for preventing neovascularisation which might be helpful in controlling the progression of ROP.

O1

Validation of Wilson’s Disease by DNA Microarray
Manjula Mathur, A.V.S.S. Narayana Rao, Rita Mukhopadhyaya
Molecular Biology Division Bhabha Atomic Research Centre, Mumbai-400085, India

Background: Wilson disease (WD) is a monogenic autosomal recessive disorder clinically manifested upon accumulation of copper at the median age of 12 to 23 years due to a mutant ATP7B gene leading to defective copper homeostasis. Human ATP7B has 1465 amino acid consisting of eight transmembrane domains, six copper binding domains, ATP-binding, transduction, phosphorylation and actuator domains. Nearly 500 mutations in ATP7B gene have been associated with WD across the world. We have attempted to develop microarrays for detecting a mutations specific to Indian population. Aims & Objectives: a) To understand the spectrum of mutations in the Indian population and b) To validate the in-house developed WD Microarrays. Material and Methods: WD mutations in ATP7B that are specific to Indian population were selected from the available WD mutation database. DNA microarrays for detection of these 62 mutations were developed. Six different types of mutations in ATP7B were generated by site directed mutagenesis (SDM). The mutation status of these samples was verified by sequencing. DIG labeling of these mutant samples followed by hybridization with WD microarrays were used for validation of the microarrays. Results: Exon-wise mutation occurrence frequency in India was generated from the WD mutation database and is compared to the mutation pattern obtained world over. Hybridization efficiency of each of SDM amplicon was tested. Quantitative comparison of the detection efficiency of the probes was carried out using Discrimination Score (DS). All the simulated mutations could be detected by our arrays. Conclusion: SDM generated samples are one of the useful means for validating indigenously developed microarrays. To the best of our our knowledge, in India, this is a first attempt for diagnosis of multiple WD mutations simultaneously.

O2

Antioxidant Gene Variants and Type 2 Diabetes: A North Indian Study
Pushpank Vats1, T. P. Singh2, Monisha Banerjee3
1Molecular & Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow-226007, India. 2Balrampur Hospital, Lucknow - 226018. E-mail: mhglucknow@yahoo.com

Background: Type 2 diabetes mellitus (T2DM), also called metabolic syndrome is a serious global health problem. The 6th edition of IDF (International Diabetes Federation) Diabetes Atlas, 2014, estimates show 382 million people worldwide suffering from T2DM between 20-79 years. Oxidative stress results from impaired antioxidant enzyme activities leading to insulin resistance (IR), β- cell dysfunction, glucose intolerance (IGT) and ultimately T2DM. Furthermore, oxidative stress has been implicated as the underlying cause of both macrovascular and microvascular complications associated with T2DM. Aims and Objectives: Our aim was to carry out genotypic, haplotype and gene-gene interaction analyses of GSTM1 del, GSTT1 del, GSTP1 +313A/G (105lle/Val; rs1695), CAT -21A/T (rs7943316), SOD2 +47C/T (rs4880) and GPX1 +599C/T (rs3811699) in type 2 diabetes (T2DM) cases and controls. Material and Methods: In a case-control study, T2DM cases were selected as per inclusion/exclusion criteria. Whole blood samples were collected in 0.5M EDTA vials from T2DM cases (n=410) and normal healthy controls (n=558). All anthropometric and biochemical measurements
were performed. DNA was isolated and genotyping was performed by polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) techniques. Genotype, allele and carriage rate frequencies were calculated using SPSS (ver 21.0). Haplotype and gene-gene interaction analyses were performed by SHEsIs software to study association with T2DM. Results: On analyzing the genotypes of 06 SNPs showed that individuals possessing ‘AT’ of CAT -21A/T and ‘I/V’ of GSTP1 105I/V have 2.1 and 2.5 times higher risk of developing T2DM. SHEsIs analysis showed 03 risk combinations of alleles viz. T C C’ (2.1 times), N N V’ (13.5 times) and P P I T C C’ (5083 times) with significant association with T2DM. Conclusion: Antioxidant gene polymorphism studies involved in oxidative stress may provide prognostic markers for disease risk identification and help the clinicians to develop personalized regimens for treatment.

O3 Association Study of Inflammatory Genes with Rheumatic Heart Disease in North Indian Population: A Multi-Analytical Approach

Usha Gupta1, Snober S. Mir2, Vaneen Garg3, Surendra K. Agarwal4, Shantanu Pande1, Balraj Mittal1

1Department of Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India, 2Department of Biosciences, Integral University, Lucknow, India, 3Department of Cardiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India, 4Department of Cardiovascular and Thoracic Surgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India.

Background: Rheumatic heart disease (RHD) is an inflammatory, autoimmune disease; occurring as a consequence of group A streptococcal infection complicated by rheumatic fever (RF). The higher incidence of RHD has been partly attributed to inflammatory factors. Therefore the present study was designed to explore the role of genetic variants in inflammatory genes in conferring risk of RHD.

Materials and Methods: The present case-control study recruited total of 700 subjects, including 400 RHD patients and 300 healthy controls. We examined the associations of 9 selected polymorphisms in seven inflammatory genes: IL-6 [rs1800795 G/C], IL-10 [rs1800896 G/A], TNF-α [rs1800529 G/A], IL-1β [rs2853550 C/T], IL-1VNTR [rs2234663], TGF-β [rs1800469 C/T], IL-8 rs1982073 T/C, and CTLA-4 [rs5742909 C/T] with RHD risk. Genotyping for all the polymorphisms was done using PCR-ARMS/PCR/RFLP methods. Multifactor dimensionality reduction and classification and regression tree approaches were combined with logistic regression to discover high-order gene-gene interactions in inflammatory genes. Results: On comparing the genotype frequency distribution in RHD patients with that of healthy controls, we found significant association of variant-containing genotypes (CT&TT) of TGF β 869 T/C [rs1982073]; [p=0.004 & 0.001, OR (95% CI)=1.65 (1.2-2.3) & 2.25 (1.4-3.6) respectively], variant genotype (CC) of IL 1β -511C/T [rs2853550]; [p=0.001, OR (95% CI)=2.33 (1.4-3.8)] and IL 1 VNTR [rs2234663]; [p=0.03, OR (95% CI)=5.25 (1.2-23.4)] SNPs with RHD risk. On performing the MDR analysis, TGF β 869T>C yielded the highest testing accuracy of 0.562. These results were further supported by the CART analysis which revealed that individuals with the combined genotypes of TGF β T/C_rS1982073 (CT/TT) and IL 1 β_rS2853550 (CC) had significantly higher susceptibility for RHD [p=0.0005, OR (95% CI) = 5.91(2.9-12.5)]. Conclusion: Using multi-analytical approaches, our study suggested important role of TGF β 869 T/C [rs1982073] in RHD susceptibility.

O4 Parental CYP21A2 Genotyping Plays an Important Role in the Reduction of Neonatal Deaths in CAH Families

Eunice Marumudi, Arundhati S1, Kadgawat R, Khurana ML, Ammini AC

Departments of Endocrinology and Metabolism, 1Anatomy, All India Institute of Medical Sciences, Ansari Nagar, New Delhi-110029, India.

Background: Congenital adrenal hyperplasia (CAH) is an autosomal recessive metabolic disorder caused by mutations in the CYP21A2 gene. If not diagnosed/ treated it can be fatal. Aims & Objectives: The present study was planned to identify CYP21A2 gene mutations in CAH patients and in their families with a history neonatal deaths due to adrenal crisis. Material & Methods: CAH patients registered in our clinic were the subjects for this study. This study is approved by the Institutional ethics committee. Detailed family history and blood samples were collected after taking the informed consent from the patients, parents and siblings. PCR amplification was done using specific primers to amplify the CYP 21 A2 gene. Results: There were 15 CAH patients who had a family history of neonatal (sibling) deaths. These 15 had 52 siblings. Out of these 52, 18 died at infancy due to adrenal crisis & 19 had normal phenotype according to parents. These patients’ parents & siblings were genotyped to find out CYP21A2 gene mutations. In 4 patients common mutations were not found. Out of these 4 patients, 3 had a family history of consanguinity. In one patient genotype has to be confirmed. Remaining 10 patients had abnormal genotype in heterozygous (p.P30L+ In2-2; Δ 8 bp -1; gene duplication-2), homozygous (p.Q318X-1; p.I172N -1) and in compound heterozygous (p.P30L+ In2+ p.Q318X-1; p.P30L+ In2+ p.Q318X-1; p.R356W) state respectively. Conclusions: It is important to consider CAH who present with a family history of neonatal deaths. Therefore parents of CAH patients who are in reproductive age group should be counselled for genotype analysis for planning future pregnancies and the risk assessments. It is also advisable to perform genotype analysis of the CAH patients’ siblings who present with a history of consanguinity & sibling deaths.

Acknowledgement: This study is being was supported by Department of Biotechnology (Ref.No.BT/PR7548/ Med/12/593/2013), Government of India.
O5

Association of D18S880 polymorphism of the CNDP1 gene with diabetic nephropathy in south Indian population

Dhanasekaran Bodhini, Sekar Kanthimathi, Viswanathan Mohan, Venkatesan Radha

Background: The CNDP1 (carnosinase dipeptidase) gene is a potential candidate for diabetic nephropathy (DN). Genetic variants in this gene have shown association with DN in Caucasian population and have not been studied in Indian population. **Aims and objectives:** To test whether the D18S880 trinucleotide repeat polymorphism in the CNDP1 gene is associated with DN in south Indian population. **Material and Methods:** Type 2 diabetic subjects with nephropathy (n=723) and without nephropathy (DM; n=560) were recruited from Dr.Mohan’s Diabetes Specialities Centre, Chennai. D18S880 was genotyped by fragment analysis on capillary sequencer. Results were analysed using Genemapper software. **Results:** The frequency of the XL (6/7 repeats of Leucine) allele was significantly lower in the DN group (0.41) as compared to the DM group (0.48, p=0.0007). Logistic regression under a recessive model showed that the odds ratio for DN was 0.69 (95%CI: 0.53-0.90; p=0.008) for 6L/XL (6L/6L and 6L/7L) genotype when compared with the 5L/5L genotype. XL genotype remained significantly associated with DN even after adjusting for potential confounders such as age, sex, BMI, HbA1c, duration of diabetes, systolic blood pressure and smoking (OR: 0.85; 95%CI: 0.74-0.98; p= 0.031). **Conclusion:** This is the first report on the role of CNDP1 D18S880 polymorphism in DN in south Indian population. The 6L/XL genotype of D18S880 polymorphism shows significant protection against DN as compared to the 5L/5L genotype in this population. The finding gains importance as D18S880 Leucine repeat is present in signal peptide region of CNDP1 gene which might play a role in secretion of carnosinase.

O6

Expression of CD133 and BMI1 and its prognostic role in subjects with glioblastoma multiforme from Indian Population

Chetan G K1, Sibin M K1, Geethashree N1, Vibhuti W1, Dhananjaya I Bhat2, Ch Lavanya1

1Department of Human Genetics & 2Neurosurgery, National Institute of Mental Health and Neuro Sciences, Bangalore, India-560029

Background: Glioblastoma multiforme GBM is the most common primary malignant brain tumor, generated by bulk of malignant cancer stem cells (CSCs). CSCs express a wide variety of proteins which are involved in the self renewal, differentiation of stem cells and it leads to the treatment failure in cancer patients. CD133 and BMI1 are the most common among them. Although several studies explained the importance of CD133 in cancer, but the role of this protein and correlations of mRNA expression with BMI1 is not addressed before. **Aim and Objectives:** This study aims to analyze the role of CD133 mRNA and BMI1 protein expression and correlation with TP53 mutations from newly diagnosed GBM patients and its role in prognosis. **Materials and Methods:** CD133 mRNA expression has performed by SYBR green realtime PCR, TP53 mutations has analysed using sequencing of exon 5-9 and Bmi1 protein expression has analysed using western blotting. Survival analysis was estimated by Kaplan Meier curve and Cox proportional hazard ratio analysis. Results: Over expression of CD133 and BMI1 was found in 47.6% and 76.2% respectively and TP53 mutations were 57.1% in our cohort. There was no correlation between TP53 mutations and gene expressions of CD133 and BMI1. We found that high level of BMI1 expression is favourable for the patients survival (P = 0.0075) and high CD133 mRNA expression was unfavourable for the patient survival (P = 0.0226). Conclusion: CD133 and BMI1 expression could independently predict the glioblastoma patient survival in multivariate analysis.

O7

Insights on the Functional Impact of MicroRNAs Present in Autism-Associated Copy Number Variants

Varadarajan Vaishnavi1, Mayakannan Manikandan1, Basant K. Tiwary2, Arasambattu Kannan Munirajan1

1Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Chennai, Tamil Nadu, India, 2Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India

Background: Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder that appears during the first three years of infancy and lasts throughout the person’s life. Recently, a large category of genomic structural variants denoted copy number variants (CNVs), were established to be a major contributor of the pathophysiology of autism. **Aims and Objectives:** Till date most of the CNV studies in autism has focused only on the protein coding genes. Therefore we aimed at analysing the miRNAs present in autism associated CNV regions. **Materials and Methods:** A series of computational tools and databases including AutDB, UCSC genome browser, TargetScan, and DAVID were utilized to elucidate the biological and functional significance of CNV-miRNAs and their target genes. **Results:** Nearly 11% of the CNV loci harbor miRNAs and a few of these miRNAs were previously reported to be associated with autism. A systematic analysis of the CNV-miRNAs based on their interactions with the target genes enabled the identification of top 10 miRNAs namely hsa-miR-590-3p, hsa-miR-944, hsa-miR-570, hsa-miR-34a, hsa-miR-124, hsa-miR-548f, hsa-miR-429, hsa-miR-200b, hsa-miR-195 and hsa-miR-497 as hub molecules. Further, the CNV-miRNAs formed a regulatory loop with transcription factors and their downstream target genes, and annotation of these target genes indicated their functional involvement in neurodevelopment and synapse. **Conclusion:** This is the first report to highlight the significance of CNV-microRNAs and their target genes to contribute towards the genetic heterogeneity and phenotypic variability of autism.
A Clustering Approach for Mapping Rare Variants Based on Mutual Association

Saurabh Ghosh¹, Soudeep Deb²

¹Human Genetics Unit, Indian Statistical Institute, Kolkata, India,
²Department of Statistics, University of Chicago, Chicago, USA

In spite of successful identification of a large number of common variants associated in various complex disorders, a substantial proportion of the total variation in a trait still remains unexplained. It is becoming increasingly evident that the “Common Disease Common Variant” paradigm needs to be modified and the “missing heritability” can possibly be explained by rare variants, which could not be identified using genome-wide association studies. However, the major impediment in identifying rare variants is that one would require huge sample sizes to detect differences in allele frequencies between cases and controls. Thus, most existing methods are based on collapsing multiple variant sites using different statistical algorithms. Motivated by the combined multivariate and collapsing (CMC) algorithm, we propose a clustering of rare variant sites, but based on their mutual extent of association rather than similarity in allele frequencies as proposed in CMC, thereby reducing the possibility of combining functional and non-functional variants. The Fisher’s exact test is performed to identify blocks of variant sites such that the initial site in each block is associated with all other sites in the block. The test for association is performed within each block by comparing the proportions of affected and unaffected individuals carrying at least one copy of a rare variant using a variance stabilizing sine transformation. We carry out extensive simulations under different rare variant models and compare the false positive rate and the power of our proposed method with some of the popular competing methods: CMC, adaptive SUM, WSS, TestRare, RareCover and Kernel-based Adaptive Clustering. We find that the proposed test procedure yields more power than the existing methods and Kernel-based Adaptive Clustering. We find that the extent of association rather than similarity in allele frequencies between cases and controls. Thus, most existing methods are based on collapsing multiple variant sites using different statistical algorithms. Motivated by the combined multivariate and collapsing (CMC) algorithm, we propose a clustering of rare variant sites, but based on their mutual extent of association rather than similarity in allele frequencies as proposed in CMC, thereby reducing the possibility of combining functional and non-functional variants. The Fisher’s exact test is performed to identify blocks of variant sites such that the initial site in each block is associated with all other sites in the block. The test for association is performed within each block by comparing the proportions of affected and unaffected individuals carrying at least one copy of a rare variant using a variance stabilizing sine transformation. We carry out extensive simulations under different rare variant models and compare the false positive rate and the power of our proposed method with some of the popular competing methods: CMC, adaptive SUM, WSS, TestRare, RareCover and Kernel-based Adaptive Clustering. We find that the proposed test procedure yields more power than the existing approaches, especially with increasing sample size, while maintaining the correct size.

Genetic Markers in PCOS Risk and Phenotype Progression

Srabani Mukherjee¹, Nuzhat Shaikh¹, Roshan Dadachanji¹, Nalini Shah², Anushree Patil³

¹National Institute for Research in Reproductive Health, J.M. Street, Parel, Mumbai- 400012, India, ²Department of Endocrinology, Seth GS Medical College, Mumbai- 400012, India

Background: Polycystic ovary syndrome (PCOS) is a common endocrinopathy that causes anovulatory infertility in women in their childbearing years. This complex syndrome has both gynecological and metabolic consequences and is typically characterized by hyperandrogenemia, insulin resistance, and menstrual irregularities. The pathophysiology is still elusive, but has been considered to be multifactorial and multigenic consisting of both genetic and environmental components. Familial aggregation of cases provides strong evidence for hereditary pattern in PCOS. Aims and objectives: Our study has undertaken a candidate gene based approach to identify putative risk alleles of some important genes viz. INSR, PPARγ, INSL3 and PON1 in association with PCOS and its related traits. Materials and Methods: Genotyping was carried out by direct sequencing and genotype association with PCOS and its related traits were carried out by chi square and regression analysis. Results: In our study, the polymorphic genotype (CT+TT) of a silent C/T polymorphism at His1058 in exon 17 of INSR was significantly associated with PCOS as well as hyperinsulinemia and hyperandrogenemia in lean PCOS subgroup only. For the PPARγ polymorphisms, the most common variant Pro12Ala in exon B showed significant association with decreased PCOS susceptibility His447His polymorphism in exon 6 as well as the Pro12Ala were significantly associated with insulin related traits in women with PCOS. An exonic polymorphism L55M of PON1 gene was found to be significantly associated with PCOS susceptibility while the Q192R polymorphism showed no association. Exploring the association for coding region polymorphisms of INSL3 with PCOS revealed that only rs6523 SNP in exon 1 has significant association with PCOS susceptibility. Conclusion: Our genetic data establishes that in Indian women, variations in genes related to insulin resistance influence the pathophysiology of PCOS. We have also highlighted a strong implication of differential insulin resistance pathogenesis in PCOS women based on BMI.

Whole Exome Sequencing helps characterize a rare highly penetrant familial disorder, turning epidemic in a village of Jammu and Kashmir, India

Swarkar Sharma¹, Ekta Rai¹, Ankit Mahajan³, Parvinder Kumar⁴, Manoj K Dhar⁵, Sushil Razdan⁶, Kumarasamy Thangaraj⁷, Carol Wise⁸, Shiro Ikegawa⁹, K.K. Pandita¹

¹School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu, India, ²Department of Biotechnology, University of Jammu, Jammu, India, ³Human Genetic Research cum Counselling Centre, University of Jammu, J&K, India, ⁴Acharya Shri Chander College of Medical Sciences, Jammu, J&K, India, ⁵Centre for Cellular and Molecular Biology, Hyderabad, A.P, India, ⁶Texas Scottish Rite Hospital for Children, Dallas, Texas, USA, ⁷Laboratory for Bone and Joint Diseases, SNP Research Center, RIKEN, Tokyo, Japan

Background: Rare disorders are poorly understood, most often remain uncharacterized or patients are misdiagnosed due to lack of specific clinical resources. A rare mysterious skeletal disorder that remained unidentified for decades and rendered many people physically challenged and disabled for life has been reported in an isolated remote village ‘Arai’ of Poonch district of Jammu and Kashmir. This Village is isolated in mountains, lacking medical facilities and the population residing in the region is highly consanguineous. Lack of information about the disorder has led huge increase in number of affected in the region. Aims and Objectives: To identify the disorder and characterize the cause of the disease Material and Methods: In our survey of the region, 70 affected people were reported, showing similar phenotype, in the village with a population of approximately 5000 individuals. We could only carry 3 affected
ABSTRACTS

O11

FISH for Prenatal, Postnatal, and Preimplantation Genetic Diagnosis.

Lim Jee Hian
Malaysia

No Abstract.

O12

Masking of the Commonest Indian \(\beta\) thalassaemia Lesion IVS I nt 5 [G>C] by Different \(\delta\) Globin Gene Defects.

Stacy Colaco, Roshan Colah, Kanjaksha Ghosh, Anita Nadkarni
National Institute of Immunohaematology, Indian Council of Medical Research [ICMR], 13th Floor, NMS Building, KEM Hospital Campus, Parel, Mumbai 400012

Background: An elevated HbA2 level is one of the characteristic diagnostic hallmarks of a \(\beta\) thalassaemia carrier. Hence HbA2 levels play a clinically significant role in \(\beta\) thalassaemia prevention programs aimed at detecting carriers, especially in a country like India with a high prevalence of the disease. While \(\delta\) thalassaemia has no clinical symptoms, its co-existence in \(\beta\) thalassaemia carriers may negatively impact the expression of HbA2 [a2d2]. This could lead to misdiagnosis of carriers and cause grave problems in genetic counselling and prenatal diagnosis for \(\beta\) thalassaemia major. Aims and Objectives: The main objective of the study was to evaluate the impact of the association of different \(\delta\) thalassaemia alleles on carrier detection of \(\beta\) thalassaemia. Materials and Methods: HbA2 and HbF were measured on the Variant Haemoglobin Testing System. Serum iron was measured using ferritin and soluble transferrin receptor ELISA assays. Presence of IVS I nt 5 [G>C] was detected by CRDB technique and the common \(\alpha\) globin deletions were ruled out using Multiplex PCR. The \(\delta\) globin gene defects were identified using direct DNA sequencing. Results: Here we report the hematological and molecular analysis of ten unrelated \(\beta\) thalassemia hetrozygotes showing presence of the common Indian \(\beta\) thalassemia mutation IVS I nt 5 [G>C]. All ten subjects showed HbA2 levels ranging from 2.4 - 3.9%. Interestingly, three of these carriers showed HbA2 levels \(\leq\)3.5% and seven of them were married to a spouse carrying a haemoglobinopathy. Iron deficiency anaemia was not detected in any of these subjects but molecular analysis of the \(\delta\) globin gene revealed the presence of \(\delta\) chain variation in all the subjects \(\delta\) promoter region mutation -68 [C>T] – 6, HbA2 Yialousa [CD 27 G>T] – 2, HbA2 Pelendri [CD 141 T>C] – 1 and a novel \(\delta\) globin mutation CD 46 [G>T] – 1. All ten subjects showed presence of four intact \(\alpha\) globin genes [aa/aa]. Conclusions: These findings accentuate that the co-inheritance of \(\delta\) thalassaemia in \(\beta\) thalassaemia carriers is not an uncommon event in the Indian population. Our studies also emphasize the importance of performing a complete molecular work up in subjects showing borderline or normal HbA2 levels, especially those married to a spouse carrying a haemoglobinopathy so as to prevent the probable birth of affected offspring.

O13

Molecular Karyotyping for Prenatal Diagnosis

Manjeet Mehta

Molecular techniques have been developed for prenatal diagnosis of the most common chromosome disorders (trisomies 13, 18, 21 and sex chromosome aneuploidies) where results are available within a day or two. This involves fluorescence in situ hybridization (FISH) or quantitative fluorescence polymerase chain reaction (QF-PCR) on fetal DNA. Both methods are quite reliable. These tests are used as a preamble to full chromosome analysis by microscopy. Cytogenetics is an indispensable diagnostic tool for the identification of chromosome abnormalities. It has become increasingly important for the identification of aneuploidy and unbalanced structural rearrangements.
in the fetus. However, conventional cytogenetic analysis of amniotic fluid or Chorionic Villus cannot reliably detect rearrangements of genomic segments smaller than 5–10 million base pairs (Mb). In addition, microscopic examination of the chromosomes may not reveal the chromosomal origin of small supernumerary marker chromosomes and may not identify subtle rearrangements of the subtelomeric regions. Furthermore, the turnaround time for karyotyping is increased by the need for cells to be cultured 10–14 days before analysis. We report here a novel karyotyping assay, utilizing bead-bound bacterial artificial chromosome probes, providing a fast and easy tool for detection of chromosomal abnormalities in a cost-efficient high-throughput manner. KaryoLite is a multiplex assay which detects aneuploidies for chromosomes 1-22, X and Y. The assay is fluorescence based and uses encoded multiplex beads from defined loci on all 24 chromosomes. This allows detection of aneuploidies on all chromosomes from a clinical sample in a single well of a 96-well microtiter plate. The test is performed using minute amounts of genomic DNA extracted directly from amniotic fluid, choriionic villi or fetal tissue. This is potentially very useful as a first line test for aneusomy detection because of its lower cost, rapid detection, and ability to generate a molecular karyotype for samples that are critically important, without the need for culture. KaryoLite as a ‘first-tier’ test in combination with other approaches would clearly enhance prenatal testing.

O14
Effect of Hydroxyurea on MicroRNA Expression and its Role in Fetal Hemoglobin Induction in Sickle cell Anemia Patients

Madhavi V Sawant1, Chandrakala S2, Roshan B Colah2, Kanjaksha Ghosh1 and Anita H Nadkarni1

1National Institute of Immunohaematology (ICMR), Parel, Mumbai - 400 012, India, 2KEM Hospital, Department of Hematology, Parel, Mumbai

Background: Hydroxyurea (HU) is efficacious for children and adults with Sickle Cell Anemia (SCA), primarily due to its ability to increase fetal hemoglobin (HbF). However, HbF induction by hydroxyurea is highly variable among patients, and its mechanism of HbF reactivation remains unclear. Recently, miRNAs have been implicated in cellular regulation and differentiation including hematopoesis and hemoglobin switching. But very few studies have focused on the importance of miRNA expression for HbF induction. **Aims and Objectives**: To see the effect of hydroxyurea on expression patterns of miRNA and its role on fetal hemoglobin induction. **Materials and Methods**: HbF levels of all samples were measured by HPLC. Each sample was enriched for CD71+ erythroid cells using an autoMACS magnetic cell sorter. miRNAs were extracted from CD71+ erythroid cells of the healthy individuals [n=3] and SCA patients, at baseline [n=7] and after 3 months of HU treatment [n=3]. Differential miRNA expression was studied using TaqMan chemistry and real-time PCR. **Results**: After HU therapy for 3 months in the 3 SCA patients the mean HbF level increased from 18.433 ± 2.396% at baseline to 30.766 ± 3.7% (p<0.01). Expression of all 6 miRNAs [miR494, miR29a, miR130b, miR210, miR16-1, miR144] were found to be up-regulated among SCA patients as compared to controls. After HU therapy miR494, miR29a, miR130b, miR210, miR16-1, miR144 showed > 3 fold increase in expression (p<0.05). **Conclusion**: This preliminary study showed a significant association of miRNA expression in HU mediated induction of HbF among Indian sickle cell disease patients.

O15
Validation of nsSNPs For Pharmacogenetic Analysis Amongst Hypertensive Punjabi Population

Praveen P. Balgir, Jaspreet Kaur Bhullar

Department of Biotechnology, Punjabi University, Patiala 147002 India

Background: Despite the availability of several antihypertensive drugs which include thiazide diuretics, beta blockers, Angiotensin-Converting Enzyme (ACE) inhibitors, angiotensin receptor blockers (ARB) and calcium channel blockers, global estimates suggest that less than 35% of hypertensives are able to achieve their target systolic and diastolic blood pressure with these drugs. Blood pressure response to antihypertensive drugs has a genetic component. A nsSNP result in actual changes in primary amino acid sequences, the function of the protein products might be altered, which can result in drastic changes in drug target interaction and, therefore, in dysfuntioning of the drug. Some studies are available amongst world populations, concerning genes in above systems and pathways but Indian studies of very few genes are available. **Aim and objectives**: In silico analysis of various antihypertensive drug target genes of RAAS, Beta Adrenergic receptor, Sodium transport system and ion regulation system pathway genes have been analysed for prediction of possible impact of an amino acid substitution on the surface and function of the human protein. **Material and Methods**: Relevant gene sequences were downloaded from NCBI. Bioinformatic tools like Ensemble, PolyPhen, Sift, SNPS3D, SNPeffect and LS-SNP available at F-SNP have been used to predict the dysfunctional effect of nsSNPs, **Results**: RAAS (ACE- rs1799752, rs4343 and rs1418193919, AGTR1- rs5186, rs12721226, CYP1B2- rs1799998), Beta Adrenergic receptor (ADRB1- rs1801253, rs1801252 and rs372579473, ADRB2- rs1042713, rs1042714 and rs1800888), Sodium transport system (NEDD4L - rs4149601, rs3865418 , ADD1- rs4961, GNB3-rs5443), and Ion regulation system pathway genes (KCNJ1-rs 610155, rs 2846679,rs2186632 , PRKNK1- rs765250, rs2277869, PRWKNK4 - rs1156666 and C1163527T) were variants identified in the relevant pathways. Results will be presented pertaining to the analysis. **Conclusion**: Since the efficacy of the antihypertensive medications are influenced by nsSNPs in enzymes and proteins involved in ADM of the drugs affecting the overall safety and efficacy in an individual patient. The SNPs have been identified and validated in silico analysis and are ready for wet lab experiments.

O16
Identification of Novel Disease Genes/Mutations for Single Gene Disorders through Homozygosity Mapping and Whole Exome Sequencing

Aneek Das Bhowmik¹, Shubha Phadke², Ashwin B. Dalal¹
¹Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India, ²Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India

Background and Objective: The application of homozygosity mapping followed by whole exome sequencing has led to rapid identification of the causative alleles for numerous single gene disorders with autosomal recessive inheritance. In the present study we report on results of these high throughput techniques in two patients affected with presumed single gene disorder.

Materials and Methods: Patient A presented with Spastic Paraplegia whereas patient B had features of Spinal muscular atrophy (SMA). Both patients were born out of consanguineous union and had similarly affected siblings. Array comparative genomic hybridization (CGH) was performed using Affymetrix CytoScan 2.7M Array. Exome capture was performed on genomic DNA sample from patient A using TargetSeq Exome Capture kit and sequencing was done on SOLID 5500xL platform.

Results: In array CGH, patient A did not reveal any significant genomic deletion/duplication. However there were many loss of heterozygosity (LOH) regions present. Homozygosity mapping analysis identified a single gene responsible for Spastic Paraplegia i.e. GJC2 in the overlapped homozgyous region of 1q41-q42.2. Exome sequencing and variant annotation analysis identified 5 potentially significant indels in patient A. Among these, a novel single base deletion was identified in GJC2 gene which causes a frameshift at codon 23 creating a stop codon (TGA) at codon 38 and thus is likely to be pathogenic mutation in the patient. Array CGH analysis in patient B also identified several LOH regions. A single gene responsible for SMA i.e. PLEKKG5 was found in the overlapped LOH region of 1p36.31 by homozygosity mapping analysis. Sequencing analysis of patient B is currently on progress.

Conclusion: These findings illustrate the utility of homozygosity mapping followed by exome sequencing to detect the cause of autosomal recessive single gene disorders. These highly automated technologies are proving to be effective for several this type of disorders and gradually replacing the laborious conventional methods.

O17 Chromosomal Aberrations and Importance of Genetic Counseling: A Study of 288 Couples with Bad Obstetric History
Shailensh Pand, Viya Salaskar, Anurita Pais, Gauri Pradhan, Chaitali Parab, Divya Shetty, Smita Patil

Background: Bad obstetric history (BOH) is defined as three or more consecutive pregnancy losses. Though almost in 50% cases the etiology is unknown, some of the factors are infectious diseases, endocrine dysfunction, auto immune disorders, parental age, environmental toxins, uterine anomalies and genetic abnormalities. Of all pregnancies 15–20% end up as spontaneous abortions of which chromosomal aberrations (CA) are seen in 50%. Parental CA is an important etiology of BOH. CA can lead to meiotic errors resulting in gametes with abnormal unbalanced chromosomes leading to pregnancy loss or genetically abnormal pregnancy outcomes. Different studies published have shown 3% to 8% of couples with BOH have CA.

Aims and Objectives: To investigate the contribution of chromosomal aberrations (CA) in couples with bad obstetric history (BOH) and the role of Genetic counseling.

Material and Methods: A retrospective cytogenetic study was done from Jan - Nov 2014 on blood samples of 288 couples with BOH. Peripheral blood cultures were set & analyzed by GTG—banding at 450-550 band level and reported as per ISCN. FISH was done wherever necessary.

Results: Out of 288 couples, CA were detected in 33 cases (11.48 %). Among those 09 cases showed balanced reciprocal translocations (27.27 %), which also included a couple with both partners. Robertsonian translocation was found in 01 (3.03 %) cases involving chromosome 13 and 14. As such couples are at high risk for fetal CA, extensive genetic counseling for couple and family members is essential. 24 cases showed normal polymorphic variants (72.72 %), genetic counseling for mode of transmission and clinical correlation may be helpful as their their association with BOH is reported. Inversion Y chromosome observed in 3 cases, although usually familial its probable associated consequences need counseling. Yqh+ in 02(06.06 %),1qh+ in 02(06.06 %), ,inv(9) in 06(18.18 %), ,9qh+ in 08(24.24 %), and 15ps+,21ps+,22ps+ in 01(03.03%) each. Three couples with CA in the form of same polymorphic variation.

Conclusions: Our study for CA in BOH are consistent with other studies. As most CA are familial, detection and genetic counseling should be recommended by all the medical practitioners to help the couple have an informed choice and help other family members in reproductive age group.

O18 Genomic Studies of High Altitude Pulmonary Edema, A critical Condition in Susceptible Sojourners
Soma Sarkar,
Department of Molecular Biology, Defence Institute of Physiology and Allied Sciences, Ministry of Defence R&D Organization, Lucknow Road, Timarpur, Delhi 110 054.

Background: Military and strategic requirements of Indian Army entail deployment of troops in the high altitude regions of the Himalayan mountains where individuals encounter hardships of whole body hypoxia and life threatening conditions of high altitude pulmonary edema (HAPE) and high altitude cerebral edema (HACE). The precise pathoetiology and inciting mechanisms regulating HAPE remain unclear.

Aim and Objective: Identify the genetic variations and molecular mechanisms in susceptible individuals who develop high altitude pulmonary edema (HAPE).

Material and Methods: Genetic variations in HAPE susceptible were compared to those who did not succumb to the high altitude stress (acclimatized) by differential gene expression analysis, candidate gene polymorphism profiling and whole genome association studies.

Results: Pathways regulating vasoconstriction through smooth muscle contraction, cellular actin cytoskeleton rearrangements...
and endothelial permeability/dysfunction were found to be modulated in HAPE. Several regulators of systemic/pulmonary hypertension including ADRA1D, ECE1, and EDNRA were upregulated in HAPE. Genotype and allele frequencies of adrenergic beta receptors (ADRB) and angiotensin converting enzyme (ACE) were significantly different in the HAPE individuals compared to acclimatized sojourners. Two SNPs, rs994960 (position 73682765) and rs1355469 (position 73664989) on chromosome 3 had p value less than 1.5E-05 in HAPE. Conclusion: High Altitude Pulmonary Edema was characterized by concurrent modulation of multiple pathways that regulate vascular homeostasis and lung fluid dynamics suggestive of multi-genic nature of regulation of HAPE. Individuals with DD genotype and D allele of ACE were prone to developing high altitude pulmonary edema. The associated SNPs rs994960 and rs1355469 lie near PDZ domain containing ring finger 3 (PDZRN3). Genomic studies on physiology of hypoxia, which is at the basis of high-altitude medicine, should elucidate important pathways in lung and heart diseases.

O19
Mitochondrial DNA Diversity and its Implications in the Genetic History of Three Different Populations of Amini Islander’s of Lakshadweep.
M Naveen1, R Rajkumar2, K Vinutha lakshmi1, K Thangaraj1, M S Mustak1

1Department of Applied Zoology, Mangalore University, Mangalagangothri-574199, India, 2Department of Evolutionary and Medical Genetics, Centre for Cellular and Molecular Biology, Hyderabad-India

Lakshadweep consists of group of coral islands shattered along south-western frontiers of India in the Arabian Sea. Amini Island is one of the first inhabitant islands of northern side of Lakshadweep. Entire indigenous population in Amini Island of Lakshadweep has been classified to three groups- Koya, Malmi and Melcheri based on their occupation and social status. These populations are highly endogamous in nature. The Migration of population, social structure and caste endogamy of Amini Island has been not traced yet genetically. In the present study, we focused on three populations (Koya, Malmi and Melcheri) from Amini Island for tracing their maternal ancestry using the approach of complete mtDNA sequencing. We have isolated the DNA from blood samples of unrelated males from above three populations and subjected to PCR amplification and whole mt-DNA sequencing. We report that Koyas, the land owner group which stands upper hand in caste stratification has high frequency of South Asians affinity (60%) with less haplogroup diversity(M33a), while in contrast Melcheris, the core working group which stands lower hand in caste stratification has high frequency of West Eurasian affinity (79.48%) with more haplogroup diversity(R30b2a). Malims, the sailors stand middle in the stratification, has almost equal contribution of West Eurasians and South Asians ancestry (40% and 53% respectively). Genetic data from mtDNA infers that Melcheris, the first settlers with West Eurasian ancestry admixed with koyas, while Malims served as intermediate people.

O20
Genetic Association Study and Gene Expression Analysis revealed Osteoprotegerin as Candidate Gene for Otosclerosis
Saurabh Priyadarshi1, Kirtal Hansdah1, PV Ramchander1, Chinmay Sundar Ray2, Soumya Ranjan Nayak2, Narayan Chandra Biswa2, Ashim Desai2, KC Panda2

1Human Genetics Lab, Institute of Life Sciences, Chandrasekharpur, Bhubaneswar, 2Shrirama Chandra Bhanj (SCB) Medical Colleges, Cuttack, 3Dr. ABR Desai ENT Clinic and Research Centre, Mumbai, 4Capital Hospital, Unit-VI, Bhubaneswar

Background: Otosclerosis (OTSC) is a late-onset hearing disorder characterized by increased bone turnover in the otic capsule. Disturbed Osteoprotegerin (OPG) expression has been found in the otosclerotic foci which may have an important role in the pathogenesis of otosclerosis. Aims and Objectives: The present study was aimed to identify the genetic risk factors in the OPG gene and to investigate its possible role in otosclerosis development. Materials and Methods: In this study, we recruited a total of 254 otosclerosis patients and 262 controls for sequencing the coding region of OPG gene. To assess the role of OPG gene in otosclerosis, we studied the gene expression of OPG and related genes (RANK and RANKL) in otosclerotic tissues (N=25) compared to normal stapes tissues (N=5) and incus bones (N=2) applied as negative controls for otosclerosis. Results: Sequence analysis of OPG gene revealed five known single nucleotide polymorphisms (SNPs) c.9C> G, c.30+15C>T, c.400+4C>T, c.768A>G and c.817+8A>C in both cases and controls. Significant associations were found for two SNPs c.9C>G and c.30+15C>T with OTSC. Testing of these SNPs for sex specific associations revealed significant association of c.9C>G in males while c.30+15C>T in females with OTSC. The underrepresentation of minor alleles for these SNPs in cases compared to controls indicates their protective effect towards otosclerosis development. Gene expression analysis detected significantly missing OPG expression in otosclerotic tissue ($\chi^2=4.693$, $P=0.0151$, one-tailed χ^2-test). However, majority of the patient stapes were featured by considerable RANK (84%) and RANKL (80%) mRNA expression. The transcript level of OPG was significantly lower ($P=0.0002$) in cases compared to controls. Conclusion: The results obtained from this study suggest that genetic variations in OPG and its altered expression in disease tissues may be the plausible cause of otosclerosis susceptibility.

O21
Clinical, Hematological, Molecular Characterization and Response to Hydroxyurea Treatment of Symptomatic 17 HbSE cases in Eastern India: The Largest Series in world
Sirsis Patel, Satyabrata Meher, Pradeep K Mohanty, Snehadhini Dehury, Prasanta Purohit, Poonam Dora, K Das, Dillip Kumar Patel

Sickle Cell Clinic & Molecular Biology Laboratory, VSS Medical College & Hospital, Burla, Odisha, India

Background: Sickle cell Hemoglobinopathy is a major public health problem in our region. Literature shows HbSE cases are less symptomatic. A compound heterozygote state of 17 cases
of HbSE, the largest number hitherto reported in our centre, most of them were severely symptomatic and they responded well to Hydroxyurea treatment. **Aims and Objectives:** Clinical, hematological and molecular study of HbSE cases & their response to low and fixed dose of Hydroxyurea (10 mg/kg/day). **Material and Methods:** Detailed clinical data, Sickling test, alkaline electrophoresis, CBC, Biochemical examination, CE-HPLC, ARMS-PCR, haplotype analysis and δ-thalassemia were done at Sickle Cell Clinic & Molecular Biology Laboratory, VSSMCH, Odisha. DNA sequencing was done. Hydroxyurea was administered at a low and fixed dose (10 mg/kg/day) based on frequency of painful crisis (VOC) and hospitalization and their response was studied. **Results:** Thirty out of 17 cases were symptomatic with repeated VOC and hospitalization. Presented at an early age (10 yr) they had moderate anemia. MCV, MCH and MCHC were low. 87.5% showed Southeast Asian haplotype for Hb E (−−−+). One was asymptomatic having Atypical haplotype (+−−−) with δ-4.2/δδ. Other one having Atypical haplotype (+−−+) with δ-4.2/δδ was on HU from two year of age. 50% (6/12) cases had δ-thalassemia (three each with δ-3.7 & δ-4.2 allele) in heterozygous state. Xmnl polymorphism (presence of ‘T’ allele) was found in 90.9%. **Conclusion:** This is the first report of 17 cases of HbSE, the largest cohort studied ever. Majority are symptomatic with 100% response to HU treatment. Presented at early age. Other associated genetic factors may be responsible for their severe symptoms which needs further research. Finding of different compound heterozygote SCD with symptoms may need consideration for Prenatal Diagnosis & pre-marital screening in our area.

O22 Mitochondrial Somatic Mutations in Human Gastric Cancer

Bhagya Bhavana V1, Gopalakrishna P1 Arun. K2, Chandramohan SM1, Munirajan A. K1, Thangaraj K1

1Centre for Cellular and Molecular Biology, Hyderabad, 2Department of Genetics, Dr ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 3Department of Surgical Gastroenterology, Rajiv Gandhi Government General Hospital, Madras Medical College, Chennai

Background: Cancer strikes people of all age groups. However, some cancers are often more frequent in individual aged >50 years. Gastric Cancer is one of the important age associated cancer which remains a third leading cause of cancer death in both sexes worldwide (8.8% of the total cancer cases). **Aims and Objectives:** DNA damage has proven to be the most independent cause for both aging and cancer. Apart from the human genomic alterations, mitochondrial dysfunction also plays a significant role in aging and cancer independently. Hence, it is very essential to identify the mitochondrial dysfunction triggered by mitochondrial genetic mutations. Mitochondrion is an important extra cellular organelle which involves in large spectrum of cytological events such as metabolism, cell cycle, growth, differentiation, signaling and apoptosis. The human mitochondrial genome is 16,569 bp in length which harbors few spontaneous mutations and many induced in various pathological conditions. Many inherited diseases are developed by pathogenic mtDNA mutations. Also there are adequate evidences associating mtDNA mutations with stomach, prostate, ovarian, breast, colon, liver and kidney cancer. Material and Methods: In our present study, we profiled mtDNA mutation status of 47 tumor tissues and paired normal samples from gastric cancer subjects. Average age of the gastric cancer patients was 55.27±4. All samples were subjected to complete mtDNA sequencing and compared with the revised Cambridge Reference Sequence (rCRS). Results: Interestingly, we identified a total of 16 novel mutations among all samples upon the comparison of both the tumor and normal tissue samples. These mutations were located in coding regions of various genes including 16S rRNA, tRNA, COI, ATP6, ND2, ND5, ND6 and also in the Control region HVS-I. The newly identified mutations were compared with other samples from different diseases to make it clear that these are novel and unique. All the mutations were compiled together and simultaneously Haplogroup association was performed. Samples were assigned with different Haplogroups among which ‘M’ Haplogroup was highest & remaining were ‘R’ and ‘U’ Haplogroups respectively. Conclusion: Our Preliminary data suggests that mtDNA of gastric cancer patients yield some novel mutations which functional consequence should be thoroughly dissected out on comparing with clinical manifestation of the tumor. Collectively, we conclude that our study subjects exhibited a mitochondrial heteroplasmy which is a very common phenomenon in gastric tumorigenicity.

O23 Clinical Exome Sequencing to Aid Diagnosis – Case Studies and Lessons Learned

Saroja M. K1, Sahana Shankar2, Honey Reddi2, Venkatesh Krishnamurthy1, Nandita Mullapudi2, Sudha Rao1,2

1Genotypic Technology Private Limited. 2Dhiti Omics Technologies Private Limited.

Background: Genomic approaches to aid in diagnosis of genetic disorders are gaining popularity in the current times. Focused exome sequencing kits have a high diagnostic yield as they represent a subset of the human exome containing only clinically relevant genes. We will present case studies (E.g.; Waardenburg-Shah, Metabolic disorders, DMD) utilizing NGS approaches in a diagnostic setting, and discuss findings, challenges and the scope and utility of these tests. **Aims and Objectives:** To determine causative genomic aberrations in patient samples. Typical scenarios include when conventional methods gave opposing results, when a genetic disorder was suspected but exact causative gene was not determined, or, when the case as presented was difficult to diagnose. **Material and Methods:** Illumina TruSight One Exome capture and sequencing kits, Illumina MiSeq and Next Seq500 Sequencer. DNA extracted from patient samples. **Results:** Exome sequencing aided in the identification of causative DNA variants in a variety of cases. The results help validate a diagnosis and, in some cases aid in correct diagnosis in the face of conflicting results from other tests. **Conclusion:** We present a few different case studies on the use of clinical exome sequencing for
diagnosis, and describe the challenges and efficient workflows to adopt genomics technologies in diagnostics. We conclude that exome sequencing based tests have significant utility in molecular diagnosis of genetic disorders. Their use and interpretation, given that they are rapidly evolving, needs to be examined carefully by qualified personnel.

O24
The Etiopathogenesis of Human Genetic Diseases – Translating Basic Research to the Clinic
Radha Saraswathy,
Senior Professor, School of Bio Sciences and Technology, VIT University, Vellore-632014

One of the practical approaches in the expansion of the knowledge of etiology and pathogenesis of the human diseases at this juncture is the Translation of basic research to the Clinics. Human health improvement requires the basic research studies to be application oriented for the welfare of the society. Various sophisticated techniques are being developed for early diagnosis and to identify the predisposed individuals or high risk groups for an early treatment or management. Using biochemical, molecular and cellular tools for developing disease markers and/or biomarkers such as disease related polymorphisms, micronuclei assay, serum markers, DNA damage and integration with bioinformatics approach will be discussed. Various precancerous and fragile chromosome syndromes were analyzed with respect to their nature of predisposition to cancer using clinical, cytogenetic and molecular studies to understand the severity of DNA damage induced genomic instability according to the nature of the disease. The diabetes samples were clinically classified into their respective types and analyzed. It was observed that the cytomechanical studies could be used as biomarker for evaluating the human diseases for an early diagnosis along with clinical and biochemical parameters. Thus advancing the diagnosis for management of human genetic diseases and utilizing genetic counseling tools will be appropriate for translation to the clinics.

O25
Association of Monocyte chemoattractant protein-1 (MCP-1) gene polymorphisms [-2518 A>G (rs1024611) and I/D (rs3917887)] with T2D and ESRD patients from population of Punjab.
AJS Bhanwer and Priyanka Raina
Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India. -143005. Email: ajsbhanwer@gmail.com, Phone: +91 98141 03474, +91 95011 14487

Background: Type 2 diabetes (T2D) is a chronic and complex disorder leading to end stage renal disease (ESRD) which increases mortality and morbidity within the diabetic patients. Monocyte chemoattractant protein (MCP-1) gene is an important gene implicated in the pathophysiology of T2D and ESRD.

Aims and Objectives: The present study examines the role of -2518 A>G (rs1024611) and Insertion/deletion (rs3917887) polymorphisms in MCP-1 gene in T2D and ESRD in the population of Punjab. Material and Methods: A total of 776 patients (257 with T2D, 204 T2D with ESRD) and 315 healthy controls were genotyped using ARMS-PCR and Insertion/deletion PCR for -2518 A>G and Insertion/Deletion polymorphism of MCP-1 gene followed by agarose gel electrophoresis. Results: For rs1024611, AG and GG genotype tends to provide 1.5-2.6 fold risk towards development of ESRD when T2D with ESRD were compared with only T2D cases, however no association was found with T2D. For rs3917887, comparison of T2D with ESRD and only T2D cases with controls under dominant model analysis revealed 1.48 and 1.80 fold risk towards T2D and ESRD development, respectively. While codominant model observed that ID genotype provided nearly 2 fold risk towards ESRD development. Conclusion: The -2518 A>G and I/D polymorphism of MCP-1 gene seems to be associated with risk of development of ESRD among T2D cases in the population of Punjab.

O26
Studies on Obese Breast Cancer Patients with Leptin Gene Polymorphisms.
Kaiser Jamil1, Mohan Reddy1, Kalyan Kumar Ch1 and Suresh V. Attili2
1Genetics Department, Bhagwan Mahavir Medical Research Centre, Hyderabad-500004, Telangana, India, 2Medical Oncologist, BiBi Cancer Hospital and Research Institute- Hyderabad.- Telangana, India

Background: Obesity is linked to elevated circulating levels of adipocyte-derived hormone leptin a recently established risk factor for breast cancer incidence and mortality. However, the mechanisms involved are poorly understood, except that leptin is a 16 kDa polypeptide hormone which is secreted by adipose tissue that acts at the brain to regulate energy expenditure and food intake and has an important role in energy balance, insulin pathway and inflammation. In the present study FAC (5-Fluorouracil, Adriamycin and Cyclophosphamide) Combination chemotherapy was most frequently used than the other combinations. Aims and objectives: In view of the importance of this gene our investigation has been to determine the impact of Lep-2548G/A polymorphism in breast cancer therapy of patients and compare to polymorphism in control group. Patients and Methods: This study was approved by the Institutional Ethics Committee. Biopsies and blood samples were collected after informed consent. The breast cancer patients were receiving various combinations of chemotherapy for their treatment. We determined the polymorphism of leptin gene for variants by a screening this gene in obese subjects (n = 100 cases and n=100 controls). The Gln2548Arg polymorphism was determined by using PCR-RFLP method and the association between the leptin gene and breast cancer risk were evaluated.

Results: We recorded demographic parameters of patients and control subjects, to correlate this data to determine the risk factors of the disease. We also determined the significance of all the parameters for statistical evaluations. The distributions of all three genotypes GG (18.8%), GA(44.8%) and AA (36.4%) in breast cancer cases were compared to that of the controls as 33.0%(GG), 29.6% (GA), and 37.4% (AA), We found that postmenopausal breast cancer cases showed
statistically significant association with GA genotype when compared with premenopausal women without the disease \((p=0.001)\). This difference was between the cases and controls in the Gln2548Arg genotypes.

Conclusion: This study has demonstrated a modestly increased risk of postmenopausal breast cancer in women harboring Gln2548Arg polymorphism of the leptin gene. Our findings suggest that the LEP Gln2548Arg polymorphism may be a useful biomarker associated with the risk of breast cancer women in obese Indian population.

O27

Development of a Multiplex PCR Based Method for Diagnosis of Duchenne Muscular Dystrophy (DMD) in the Patients Attending PGIMS Hospital

Daya Shankar Lal Srivastava, Dhara B. Dhaulakhandi
Department of Biotechnology & Molecular Medicine, Pt.B.D. Sharma PGIMS Rohtak, Haryana

Background: Duchenne muscular dystrophy (DMD) is an inherited X-linked recessive disorder. It has estimated worldwide incidence of 1:3500 in children. The disease is caused by mutations in the dystrophin gene, which results in muscle degeneration and eventually death. At PGIMS Rohtak, creatine kinase, serum calcium, electromyogram, and muscle biopsy have been used routinely for clinical diagnosis of DMD.

Aims and Objectives: As of now, molecular diagnosis has not been in clinical practice at PGIMS Rohtak for specific diagnosis of DMD. Since, there is no treatment available for DMD, carrier detection and prenatal diagnosis remains important considerations for families with history of DMD. In the present study, by using appropriate set of primers, a multiplex PCR based diagnostic test has been established.

Material and Methods: We have screened 7 suspected DMD patients who were referred to our laboratory by outpatient department of our hospital. Genomic DNA was extracted from human peripheral blood and 21 exons deletions in dystrophin gene were tested by multiplex PCR method.

Results: Out of seven, 6 patients demonstrated at least one exon deletion in the dystrophin gene. However, in one suspected patient no deletion mutation was observed. **Conclusion:** The method carries significance because of its specificity, sensitivity and rapidity, as several exons can be detected in a single run.

O28

Surface Layer Protein-A (SlpA): A protein Domain of the Lactobacillus sp. with Anti-Cancer Activity on GIT Cancer Cell Lines

Ranjith Kumavath, Satyanarayana S.V

Corresponding Authors: Dr. Ranjith Kumavath, Dept. of Genomic Science, School of Biological Sciences, Central university of Kerala, Padanakkad,Kasaragod-671314;

The surface layer proteins are found in the adherence bacterial strains viz. Lactobacillus sp. and Clostridium and they are secreted for purpose of the evoking immune responses during the active pathogenic infection in the host organism. It had a wide variety of applications in probiotics, cytotoxic and apoptotic activities against yeast system. Indeed we had found with SlpA a domain protein binding efficacy on the GPCR, RTK, TNFR, JNKR, and p38 receptors with protein-protein interaction on Clus pro 2.0 and showed distinctive near-native structures nested within a multitude of false positive structures on surface complementarities to provide atomic interactions, and electric charges. We have depicted the pathways leading to the apoptosis by the SlpA. The binding efficacy of the SlpA with the GPCR had made to conformation excitation of the G-linked proteins by the GTP and related kinases. GPCR leads to the phosphorylation of the G-Linked and also the β-γ couple proteins. However, these leads to the cascades of the phosphorylation and electron transfer to on PKC proteins. In contrast, to JNK and p38 signaling pathways could negotiate inflammatory responses by interaction over their expression and binding energies.

Conclusion: The significant activities of SlpA with specific sites of pathogenic cellular responses like cell proliferation, stress induced responses on the apoptosis modulation on the gastrointestinal track (GIT) cancer cell lines.

O29

Role of ADAM33-S2 (G/C) gene polymorphism in the etiology of copd in south indian population

Vijaya Laxmi. K\(^1\), Venkateshwari. A\(^1\), Sai Kumar. A\(^2\)
Subhakar. K\(^2\), Jyothy. A\(^1\)
\(^1\)Institute of Genetics & Hospital for Genetic Diseases, Osmania University, Hyderabad, \(^2\)Govt. General & Chest Hospital, Erragadda (Irranuma), Hyderabad.

Background: COPD is characterized by air flow limitation that is not fully reversible and is associated with an influx of neutrophils, macrophages and CD8 T lymphocytes in the airways. ADAM33 is a member of the ADAM family involved in cell adhesion, cell fusion, cell signalling, tissue remodelling and proteolysis. Recent researches are elucidating the role of ADAM33 SNPs in lung function loss and COPD. ADAM33-S2 polymorphism effect gene regulation influence susceptibility to the disease and leads to progressive destruction of alveolar tissue and enhance accelerated decline in lung function.

Aim & Objectives: The present study is aimed to evaluate the role of ADAM33-S2 gene polymorphism in the etiology of COPD in South Indian population. The objective of the study is to identify the association of S2 polymorphism in the progression of disease.

Materials and Methods: The present study included 120 patients diagnosed with COPD from Govt. Chest Hospital, Hyderabad and an equal number of age and sex matched healthy controls. Genomic DNA was extracted from all the subjects by phenol-chloroform method. Genotyping was carried out by PCR-RFLP followed by agarose gel electrophoresis. Results were analysed for statistical significance using chi-square and risk was predicted by odds ratio.

Results: Genotype frequencies GG, GC and CC were found to be 20.8%, 47.5% and 31.6% in controls and 19.1%, 31.6% and 49.1% in COPD cases respectively. The statistical analysis of genotypic and allele frequencies revealed a statistically significant association of G allele in COPD patients in comparison with controls \([GG \text{Vs} \text{GC: } X^2=7.514, p=0.006, \text{OR}=2.292, 95\% \text{CI}=1.306-4.153\] and \([GG \text{Vs} \text{CC: } X^2=1.684, p=0.194, \text{OR}=1.688, 95\% \text{CI}=0.842-3.391] \). Allelic frequencies are found to be C=44.58%, G=55.4% in controls and C=35%,
G=65% in patients respectively [(G Vs C: X² 4.209, p= 0.040, OR= 1.494, 95% CI= 1.035-2.158]. **Conclusion:** Our study is first to reveal the association of ADAM33-S2 'G' allele increased risk by 2-fold in the etiology of COPD. However, an increase in sample size and haplotype analysis with other SNPs in proximity further strengthens the study.

O30

Association of PGC-1α Gene with Type 2 Diabetes in Three Unrelated Ethnic Groups of North-West India

Rubina Sharma1, Rohit Kapoor2 and AJS Bhanwer1

1Department of Human Genetics, Guru Nanak Dev University, Amritsar, India, 2Heart station and Diabetes Clinic, Amritsar, India.

Background: PGC-1α is a multifunctional transcriptional protein which plays a central role in the control of genetic pathways that result in glucose homeostasis in liver and muscle and adaptive thermogenesis. **Aim:** To investigate the association of PGC-1α gene with Type 2 Diabetes (T2D) among endogamous groups (Bania, Brahmin and Jat Sikh) of North-West India and to understand the interaction between these SNPs. **Methods:** The present study investigates the association of six polymorphisms: Thr612Met (rs3736265), Thr528Thr (rs3755863), Gly482Ser (rs8192678), Asp475Asp (rs17574213), Thr94Thr (rs2970847) and IVS2+C>A (rs2946385) in PGC-1α gene with T2D. Total of 1125 samples including 554 diabetic patients and 571 controls (202 cases and 207 controls from Bania, 151 cases and 158 controls from Brahmin, 201 cases and 206 controls from Jat Sikh groups) were enrolled in this study. **Results:** Higher risk of AA genotype for rs3736265 and rs3755863 was observed for T2D susceptibility in Jat Sikh group. AA genotype of rs8192678 tends to provide 2-fold risk towards T2D predisposition in Jat Sikh and on contrary, individuals with GG genotype give 2.3-fold risk in Bania group. CT genotype of rs2970847 in Brahmin; TT genotype in Jat Sikh group confers risk for T2D. For rs2946385, CA+AA and CA genotypes in Brahmins provide 2 fold risk towards T2D aetiology. No association of rs17574213 was seen in any group. Haplotypes GGGGCA, GGGTGC in Brahmin; GAAGTC, GGGGTGC in Jat Sikh group provide ~1.5-5 fold increased T2D risk. Global p-values of haplotypes in Bania, Brahmin and Jat Sikh are 0.01, 2.08x10-8 and 1.34x10-7 respectively imply significant role of observed haplotypes in T2D etiology. MDR analysis revealed significant interaction (high synergy) between 3-locus model involving rs3755863, rs8192678 and rs2970847 polymorphisms in the progression of T2D. **Conclusion:** Differential pattern of association of various SNPs and haplotypes of PGC-1α suggests the role of ethnicity in susceptibility to T2D.

O31

Association of Cytokine Gene Polymorphism with Periodontal Disease

Manikandan G.R, Presanthila Janam

Govt.Dental College, Trivandrum

Periodontal disease comprises of a heterogenous group of conditions that affect millions of people worldwide. Cytokines play a key role in all stages of the immune response to periodontal disease. A cross sectiona study design was employed in which the frequency of specific alleles and genotypes at specific locus of IL-1RN and IL-6 genes were compared between individuals with the disease and a comparison group of healthy people with clinical attachment loss of less than 3 mm. Restriction fragment length polymorphism was carried out. The pattern of distribution of alleles and genotypes showed wide variations when compared to data from other ethnic population in literature. As the number of genetic studies increases, allowing for assembly of polymorphism maps for a given population the chance of developing strategies towards prevention or determination of prognosis of the condition will increase proportionally.

O32

TP53 Polymorphisms and Chromosomal Instability in Breast Cancer Patients: A Follow up Study

Sarika Sharma1, Neeti Rajan Singh2, Meena Sudan3, Manjit Singh Uppal4, Mridu Manjar1, Kamlesh Guleria1, Vasudha Sambyal1

1Human Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University Amritsar, Punjab (India). 2Department of Surgery, Department of Pathology, Sri Guru Ram Das Institute of Medical Sciences and Research, Amritsar, Punjab (India).

Background: Genomic Instability is a hallmark feature of solid tumours including breast cancer. Alteration of p53 is an important step in genomic instability and susceptibility to neoplastic state transformation. Polymorphisms in TP53 and chromosomal instability can be a biomarker for aggressiveness of cancer and response to therapy. **Aims and objectives:** To explore possible interaction between TP53, p.R72P (rs1042522), PIN3 Ins16bp (rs17878362) polymorphism and chromosomal instability as biomarker for prognosis of breast cancer. **Materials and Methods:** DNA samples of 200 patients and 200 controls were screened for TP53 polymorphisms. Cytogenetic analysis was done for 56 patients (pre and post-op) and 56 unrelated healthy controls. **Results:** Frequency of RR, RP and PP genotype of p.R72P was 23.5% vs 33.5%, 51.5% vs 45.5% and 25% vs 21% in patients and controls respectively. PR-A1A2 genotype combination was 23.5% vs 33.5%, 51.5% vs 45.5% and 25% vs 21% in patients and controls respectively. RP genotype showed 1.61 fold increased risk for breast cancer. Frequencies of A1A1, A1A2, A2A2 genotypes of PIN3 Ins16bp polymorphism were 67.5 vs 68.5%, 26% vs 27.5%, 7% vs 4% in patients and controls respectively. PR-A1A1 genotype combination showed significant risk of breast cancer (p=0.05). Significantly higher frequency of aberrant metaphases in the post-op patients as compared to the pre-op patients (p<0.0001) and controls (p=0.0001) was noted. Chromosomal instability was increased in patients with PR-A1A2 genotype as compared to the controls. The patients with RR-A1A1 genotype had increased chromosomal instability after administration of chemo-radiotherapy. **Conclusion:** RR-A1A1 genotype combination of p.R72P and PIN3 Ins16bp polymorphism of TP53 is associated with increased chromosomal damage in post-op patients.
O33

A Common Functional Genetic Variant of Pancreastatin Profoundly Increases the Risk for Cardiometabolic Diseases in Indian Populations

Prasanna K. R. Allu1, Venkat R. Chirasan2, Malapaka Kiranmayi1, Lakshmi Subramanian1, Durairajandian Vishnuprabu2, Bhavani S. Sahu2, Anitha Mani3, Gopi Krishna Rathanivel1, Saurabh Sharma2, Amal K Bera3, Geetha Subramanian1, Ravi MS4, Arasambattu K. Munirajan2, Madhu Khullar5, Ajit S. Mullasari2, Venkatesan Radha6, Viswanathan Mohan8, Sanjib Senapati1, Nitish R. Mahapatra4

1Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India, 2Department of Genetics, University of Madras, Taramani Campus, Chennai 600113, India, 3Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India, 4Dept. of Cardiology, Madras Medical College and Government General Hospital, Chennai 600003, India, 5Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai-600037, India, 6Dept. of Molecular Genetics, Madras Diabetes Research Foundation, Chennai 603103, India

Background: Pancreastatin (PST) is a potent physiological dysglycemic peptide derived from the pro-hormone chromogranin A (CHGA). Aims and Objectives: Re-sequencing of the PST region in the exon-7 region of CHGA.

Material and Methods: 3676 Indian subjects (n=7352 chromosomes) were studied. Results: Occurrence of three naturally occurring variants: C9226T causing substitution of Arg253 by Trp253, G9328A causing substitution of Glu287 by Lys287 and G9358A causing substitution of Gly297 by Ser297 was noted. While the Glu287Lys (PST-287K) is a novel variant in our population, the Gly297Ser (PST-297S) and Arg253Trp (PST-253W) variants have previously been reported in other populations. Among these PST variants, PST-297S is the most common one occurring in ~15% of our study population. Gly/Ser subjects displayed significantly higher levels of plasma glucose (fasting/post-prandial/random), insulin resistance (HOMA-IR), HbA1c, total cholesterol, triglycerides, LDL-cholesterol, diastolic blood pressure and catecholamines (epinephrine and norepinephrine) as compared to wild-type Gly/Gly counterparts. Consistent with such effects on biochemical/physiological phenotypes, the PST 297Ser allele was detected at markedly higher frequencies (by 1.3-1.4-fold) in subjects with type-2-diabetes/hypertension/coronary artery disease than healthy controls. Conclusion: Thus, PST-297S variant of physiological dysglycemic peptide increases the risk for type-2-diabetes, hypertension and coronary artery diseases via enhanced interaction with PST receptors.

O34

Genotypes of CYP1A1, SULT1A1 and SULT1A2 and risk of squamous cell carcinoma of the esophagus in Kashmir, India; outcome of a case-control study

Idrees Ayoub Shah1,2, Gulzar Ahmad Bhat1, Promila Mehta2, M Maqbool Lone2, Nazir Ahmad Dar1

1Department of Biochemistry, University of Kashmir, Hazratbal Srinagar, JK, India, 190006. 2Department of Human Genetics, Punjab University Patiala, PB, India, 147002. 3Departments of Radiation Oncology, SK Institute of Medical Sciences, Soura, Srinagar, JK India. 190011

Background: Polymorphisms of various genes encoding xenobiotic metabolising enzymes have been associated with different cancers, but the overall results are mixed and inconclusive. Esophageal Squamous Cell Carcinoma (ESCC) is a leading malignancy in Kashmir India, and the studies on genetic predisposition towards ESCC are limited. Aims and objectives: We conducted a case control study to evaluate the association of CYP1A1, SULT1A1 and SULT1A2 genotypes with ESCC in Kashmir India, and their role in modulating the risk associated with different risk factors. Methods: We recruited 404 pairs of histopathologically confirmed ESCC cases and controls individually matched for sex, age and district of residence. Information on various dietary, lifestyle and environmental factors was obtained in face to face interviews using a structured questionnaire. Genotypes were analysed by polymerase chain reaction and restriction fragment length polymorphism and sequencing in a randomly selected samples. Conditional logistic regression models were used to calculate odds ratios (ORs) and 95% confidence intervals (95% CIs). Results: A higher risk was observed in the subjects who harboured variant genotype of CYP1A1*4 (OR = 2.08; 95% CI: 1.27 – 3.41); and the risk was further enhanced in the subjects who were smokers (OR = 3.47; 95% CI: 1.62 – 7.42) and were adobe dwellers (OR = 6.71; 95% CI: 3.02 – 14.89). There was a non-significant difference in the polymorphic variants of SULT1A1*2 and SULT1A2*2 between cases and controls and both variants do not modulate risk in smokers or adobe dwellers. Conclusion: Unlike SULT1A1*2 and SULT1A2*2, the polymorphism of CYP1A1*4 is associated with ESCC risk. The findings need to be substantiated from other high risk populations with large sample size.

O35

Role of Shh-Gli1 Signaling Novel Transcription Factor BMI1 in Medulloblastoma Development

Mehdi H. Shahi1, M. Mobarak Hossain1, Asif Ali2, Fakhi Firdaus3, Mohammad Faraz Zafeer4, Mohammad Afzal5

1Interdisciplinary Brain Research Centre (IBRC), Faculty of Medicine, Aligarh Muslim University, Aligarh, India, 2Human Genetics and Toxicology Laboratory, Section of Genetics, Faculty of Life Sciences, Department of Zoology, Aligarh Muslim University, Aligarh, India

Medulloblastoma is the most common malignant pediatric brain tumor. Brain tumor stem cells (BTSCs) are responsible for the poor survival outcome of the treated medulloblastoma patients. Medulloblastoma has been divided into four categories on the basis of expression pattern of genes and the major cell signaling pathways in the development. Medulloblastoma Group A (Wnt signaling mediated), Group B (Sonic hedgehog signaling, Shh) while non-Wnt/Shh include Group C and Group D. Interestingly, Sonic hedgehog (Shh) signaling pathway is one of the crucial signaling pathways to regulate stem cell self-renewability. Glis activates many downstream target gene/transcription factors including BMI1 to promote brain tumors (medulloblastoma and...
glioblastoma). BMI1, a polycomb complex protein is also known as polycomb group RING finger protein 4 (PCGF4) or RING finger protein 51 (RNF 51). Interestingly, BMI1 showed high expression in both brain tumors, medulloblastoma and glioblastoma. Shh treatment induced BMI1 expression besides it downstream gene Gli1 and high Gli1 expression also promote BMI1 expression. High expression of BMI1 in tumor cells indicates high capacity of self-renewing characteristics. Most of the BTSCs showed high expression of BMI1. Inhibition of GliIs with specific inhibitor GANT61 and GliIs siRNAs mediated knockdown inhibits the brain tumor cell proliferation and also decreased the expression of BMI1 in medulloblastoma and glioblastoma. Interestingly, recent studies indicated that medulloblastoma of group C and group D showed high expressions of BMI1 and forkhead box protein G1 (FoxG1), respectively. Interestingly, it is reported that BMI1 is also downstream target of FoxG1. Personalized medicine to treat different groups of medulloblastoma is not feasible in India, rather we need to focus on very specific and crucial transcription factor, which is in the downstream target of the most of the signaling pathways responsible for medulloblastoma development.

O36 Genetics of Fetal Hemoglobin: Relevance for Prognostication
Aparna A. Bhanushali, P. K. Patra, Smarnika Pradhan, Suraj Khanka, Devika Nair, Sujata Singh, Henu Verma, B. R. Das
SRL Ltd, Prime Square Building, Plot No 1, S. V. Road, Goregaon (W), Mumbai- 400 062.

Background: Though SCD is a monogenic disorder, at the phenotypic level it is a multigenic disease, with different clinical outcomes. These variable outcomes could be attributed to genetic modifiers. Several studies have revealed fetal hemoglobin (HbF) as a major genetic modulator in SCD. Recently, Genome wide association studies have indicated three major quantitative trait loci; Xmn-HBG2, HBS1L-MYB intergenic region and BCL11A locus to account for 20-50% of the variation in HbF levels in SCD patients. Aims and Objectives: There is minimal information about genetic factors influencing the disease course in Indians. The current study is the one of the first report investigating genetic variants at these loci affecting HbF levels. Materials and Methods: The current study was conducted on 240 SCD and 60 sickle cell trait individuals. Genotyping was performed for the BCL11A rs11886868, rs1427407; HMIP rs9399137, rs6934903; HBG2 Xmn1 polymorphism rs7482144; -68 C>T HBD promoter polymorphism. Frequency and association of these variants with HbF levels was analyzed. Results: All the 3 loci were associated with HbF levels in Indian SCD patients. The BCL11A rs1427407 was significantly associated with HbF levels contributing to ~23% of the trait variance, the BCL11A rs11886868 for 3.65%, HMIP rs9399137 for 3.8% and XMN1 accounted for 11% of the trait variance. Interestingly no association of the HBS1L-MYB rs6934903 with the HbF levels was seen. This study also determines the presence of the promoter polymorphism -68C>T in the HBD gene which was exclusively seen in individuals with Arab-Indian haplotype and has hitherto been unreported in Indians. Conclusions: The present study indicates the BCL11A, HMIP and β-Globin region to be associated with elevated HbF levels. Further interrogation of these variants with respect to pain crisis is warranted, as they are also known to associate with pain crisis and hospitalization rates. This may aid in prognostication.

Poster Presentations

P1
Dermatoglyphic Pattern Study in Morton’s Toe/Royal Toe.
Vijaylaxmi Gupta, Arvind Kumar Yadav, Akhtar Ali, Amit Kumar Rai, Parimal Das
Centre for Genetic Disorders, Faculty of Science, Banaras Hindu University, Varanasi-221005 U.P, India

Background: In 1980, Francis Galton suggested fingerprints as a useful tool in personal identification. The term Dermatoglyphics was coined by Harlod Cummins in 1926 which refers to the study of epidermal ridges. Aims and Objectives: Evaluation of sexual dimorphism in dermatoglyphic traits. Objective: Study of fingertips pattern of individuals having Morton’s toe. Material and Methods: 77 students (49 females and 28 males) aged 20-30 years from Banaras Hindu University those specially having Morton’s toe were enrolled for the present study. Both fingerprints and footprints were taken on white paper using inkpad. However, presence of insufficient literature and an accepted classification of fingerprint data was tabulated analyzed statistically and discussed. Results: While all the participants in the study group have Morton’s toe different fingerprint patterns were observed in males and females. Whorl was found in 42.04% female and 40.00% of male, radial in 28.57% female and 24.642% males, ulnar in 28.57% female and 24.571% male, and arch in 5.102% female and 6.785% male. Conclusion: It appears that whorl impression is more prominent in both the sexes. Followed by radial (28.57%) in female and ulnar in male (28.57%). Lowest frequency was found for arch pattern in both sexes i.e. 6.78% in male and 5.10% in female respectively. Study is underway for identifying unique fingerprint pattern in future.

P2
In Silico Study for Interaction of Ligand Molecules with Ebola Virus VP40 Matrix Protein
Neha Srivastava, Prashant Ranjan and Parimal Das
Centre for Genetic Disorder, Faculty of Science, Banaras Hindu University, Varanasi –221 005, UP, INDIA

Background: Ebola virus is a negative strand RNA filamentous virus of filoviridae family, which causes severe hemorrhagic fever in human and non human primates. This virus is naturally resistant to various drug and vaccines. The virus matrix protein VP40 is a structural protein that plays a central role in virus assembly and budding at the plasma membrane of infected cells. Aim: Identification of potential drug targets for Ebola virus matrix protein VP40. Objective: Qualitative assessment for various potential drug targets for Ebola virus. Materials and Methods: Sequence of VP40 protein of Ebola was taken from
Williams-Beuren syndrome (WBS) is a genetic counseling of the family. Techniques like array CGH and MLPA. Confirmation of clinical highlights the utility of high resolution molecular cytogenetic neurological and cognitive deficits in WS patients. This case are expressed in the brain and may contribute to the distinct and general transcription factors (GTF2I and GTF2IRD1) region included CYLN2 encoding cytoplasmic linker protein 588 kb deletion in the WBS critical region.

Background: Williams-Beuren syndrome The breakpoint was resolved in CYLN2 and RFFC2 genes among 7 (CYLN2, FZD9, STX1A, for patient and the parents. MLPA showed the deletion of only markers targeting all regions of known cytogenetic importance. Beadchip (Illumina, San Diego, Calif) which includes 300,000 microarray was performed using the HumanCyto SNP-12 known to cause mental retardation syndromes Cytogenetic aberrant copy numbers of several chromosomal regions performed using Salsa MLPA kit P064-B3 MR-1 to detect GTG-banding techniques in the patient as well as both parents.

Materials and Methods: Chromosomal analysis revealed normal karyotype associated with chromosome abnormalities. Genomic imbalances play a major role in causation of these disorders. Using routine cytogenetics techniques like GTG banding, and molecular cytogenetic techniques like Fluorescence in situ hybridization (FISH) using WCP probes and bacterial artificial chromosomes (BAC) clones were performed. Additionally, array CGH was also performed. Results: The GTG banding revealed a karyotype of 47,XX+marker. Array CGH identified the marker to host a 33Mb of chromosome 3q region and a 38Mb of chromosome 9p region. This was confirmed by WCP FISH. Further characterization was done by 4 BAC clones from 3q region and 4 BAC clones from 9p region. Conclusion: The application of the combined cytogenetic methods like array CGH and FISH helped in the systematic characterization of the sSMC. The accurate characterization of the SMC helps in the identification of chromosomal origin, gene content or any other imbalances in the genome.

P4 A Systematic Molecular Cytogenetic Characterization of A Supernumerary Marker Chromosome in A Girl With Seizures

Usra R. Dutta, Ashish Bahal, Ashwin B. Dalal
Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India

Background: Small supernumerary marker chromosomes (sSMCs) are chromosomal fragments or markers whose origin often cannot be identified by conventional cytogenetic methods alone and require molecular approaches for definitive characterization. sSMCs are almost the size of chromosome 20 or smaller. sSMCs are found in 0.043% of live births and approximately 77% of sSMCs are de novo and 23% are inherited. Aims and Objectives: A 11-year old girl was referred to our genetic clinic for evaluation. The aim of the present study was to identify and characterize the chromosomal abnormality.

Materials and Methods: Here we report a 11 year old girl with seizures, low IQ, white strips on whole body and hands and with less hair growth. The conventional cytogenetic techniques like GTG banding, and molecular cytogenetic techniques Fluorescence in situ hybridization (FISH) using WCP probes and bacterial artificial chromosomes (BAC) clones were performed. Additionally, array CGH was also performed. Results: The GTG banding revealed a karyotype of 47,XX+marker. Array CGH identified the marker to host a 33Mb of chromosome 3q region and a 38Mb of chromosome 9p region. This was confirmed by WCP FISH. Further characterization was done by 4 BAC clones from 3q region and 4 BAC clones from 9p region. Conclusion: The application of the combined cytogenetic methods like array CGH and FISH helped in the systematic characterization of the sSMC. The accurate characterization of the SMC helps in the identification of chromosomal origin, gene content or any other imbalances in the genome.
blood sample was collected and cultured to obtain metaphase spread using standard procedure. These metaphases were analysed using cytovision software. Patients without identifiable chromosomal anomalies were tested for Fragile X syndrome. Array CGH testing was done in fragile X negative patients using Illumina and Affymetrix platforms. The results were validated using MLPA / FISH / qPCR. Results: Patients were divided into following groups. Patients with intellectual disability (n=55) - a total of 96 copy number variations were observed, out of them 15.62% were pathogenic, 57.29% were of uncertain significance and 27.08% were benign in nature. Patients with autism (n=21) - a total of 55 copy number variations were observed, out of them 7.27% patients showed pathogenic copy number variations, 61.81% were of uncertain significance and 30.9% were benign in nature. Conclusion: Use of Array CGH has led to increased yield of cytogenetic anomalies in patients of Intellectual disability / Autism. Higher resolution feature leads to better delineation of genomic imbalances and characterization of previously unidentified cytogenetic anomalies is also made possible by use of this technique.

P6
Deletion Boundaries and Variable Phenotypic Expression in WHS

Chirag Modi1, Chaitanya Datar2, Manisha Desai3, Bhoomi Patel1, Jayesh Sheth1, Frennyn Sheth1
1FRIGE’s Institute of Human Genetics, FRIGE House, Jodhpur Gom Road, Satellite, Ahmedabad-380 015. 2Sahyadri Genetics, Unit of Sahyadri Hospitals, Barve Memorial Complex, Pune.

Background: Deletion encompassing 4p16.3 causes Wolf-Hirschhorn syndrome (WHS). This is a contiguous gene syndrome caused by the deletion of more than one gene and is associated with wide spectrum of phenotype in patients. Aims and Objective: To compare and correlate the size of deletion with phenotypic presentation. Materials and Methods: Three cases having multiple congenital anomalies/dysmorphic features were initially investigated using conventional cytogenetic [CC] GTG-banding technique. Minimum 25 metaphases were scored in each case to rule out mosacism. Parents were investigated to confirm the mode of inheritance. Fluorescence in situ hybridization [FISH] was carried out using overlapping BAC clones in one case clinically suspected having WHS and in cases of dysmorphic features, developmental delay and failure to thrive; oligonucleotide array comparative genomic hybridization [aCGH] was carried out. Results: Microscopically visible terminal deletion on 4p was detected in case-1 46,XX,del(4)(p16;pter) whereas remaining two cases were apparently normal at 550-band resolution. Clinically suspected case was further investigated using various BAC FISH probes covering whole #4p arm including RP11-262P20 encompassing WHSC 1 and WHSC 2 genes and control BAC probe RP11-195L6 positioned at 4q26. This has facilitated to narrow down and confirm the deleted region of 193Kb covering both the genes WHSC1 and WHSC2 i.e. 46,XY. ish 4p16.3(RP11-262P20x1, RP-195L6x2). The third case was having severe facial dysmorphic features along with significant failure to thrive and developmental delay hence, aCGH was carried out and 5.5 Mb deletion was detected at 4p16.3p16.2 i.e. arr 4p16.3p16.2(71,552-5,506,588)x1(hg19). All three cases showed de novo alterations as parental karyotype study was normal. Conclusion: The study demonstrates that an individual with a strong clinical suspicion of chromosomal abnormality and a normal CC study should be further investigated using molecular cytogenetic techniques such as FISH or aCGH.

P7
The Role of Microsatellites – BAT26, D2S123 Flanking The Human Mismatch Repair Gene in the Genesis and Progression of Oral Squamous Cell Carcinoma

K.Navin Nair, Swagatika Panda, Beena VT
Oral Pathology, Govt. Dental College, Trivandrum

Background: Oral squamous cell carcinoma is the sixth most common human cancer and accounts for at least 90% of all oral malignancies. The increased occurrence of oral squamous cell carcinoma in the Indian subcontinent is primarily due to the habit of betel quid chewing. The prognosis of oral cancer is dependent on the early detection of cancer. The choice of the treatment modalities and whether a radical or conservative approach should be considered may also depend to a certain extent on the stage of tumour cell invasion and histopathological grade of cancer. Aims and Objectives: Considering the various contradicting propositions regarding the role of microsatellites in oral squamous cell carcinoma (OSCC) our study tried to determine the role of Big Adenine Tract (BAT 26) and D2S123 flanking the Human Mismatch Repair (hMSH2) gene, in the genesis and progression of oral squamous cell carcinoma. Materials and Methods: Tumor tissue and 3ml blood were collected from each patient diagnosed with oral squamous cell carcinoma (n=37). DNA was isolated and amplified by monoplex Polymerase Chain Reaction using appropriate markers. Microsatellite instability was assessed by comparing the peak patterns of matched tumor and blood in the electropherogram. Results: The frequency of microsatellite alteration, microsatellite instability and loss of heterozygosity at D2S123 were calculated as 43.2%, 21.6% and 27% respectively and was in various forms. There was a significant association between microsatellite alterations at D2S123 with histopathological differentiation (p < 0.05). There was no microsatellite alteration at BAT 26 in any of our samples. Though BAT 26 is reported to be quasimonomorphic, interestingly one patient in this study has shown polymorphism which is worth reporting as this allele was previously not reported in Indian population. Conclusion: This study did not find a role of BAT 26 in oral squamous cell carcinoma on the other hand microsatellite instability at D2S123 might play a role in progression of oral squamous cell carcinoma. By the virtue of this study we could identify a never reported allele of BAT 26 in Indian population, which strengthens the concept of routine evaluation of both normal and tumour specimens must be done to avoid mistakes in classifying an allelic variation as microsatellite alteration.
Oral submucous fibrosis (OSF) may be considered a collagen metabolic disorder that involves oral mucosa. Aims and objectives: To elucidate the role of basic fibroblast growth factor in angiogenesis in oral submucous fibrosis. To find the polymorphism in bFGF gene in oral submucous fibrosis by PCR and enzymatic digestion of products. Materials and Methods: This study is focused on polymorphism in FGF2 gene in the promoter region (-921C/D) in patients with oral submucous fibrosis (OSF), belonging to south Indian ethnic population. The sample size selected is 31 of which 22 female patients and 9 male patients were selected. DNA samples from 31 subjects of the same ethnic group and comparable demographic features who have had practiced the habit of areca-chewing of almost 5 year duration, and 52 remained free of disease constituted the controls. DNA from isolated blood samples and PCR was performed by specific primer to amplify specific target. All DNA samples were collected progressively and purified from peripheral blood employing standard protocols and tested for SNPs. The extracted DNA samples along with the primers underwent PCR amplification and the genotypic and allelic frequencies were calculated. Results: Allelic frequencies for this C to G polymorphism in patient were 58.06% and 41.94% G (9 CC, 18CG, 4GG) and in controls were 60.57% and 39.43% G (17 CC, 29CG, 6CG). Conclusion: Our study showed no significant variation in expression of SNP, -921 (C/G) of the bFGF gene in case and controls.

Microsatellite Instability in Oral Squamous Cell Carcinoma With Reference to Tumor Suppressor Genes

Aims and objectives: This particular study was done to detect the microsatellite alterations in OSCC in tumor suppressor genes p53 and BRCA1 present on chromosome 17 using two highly polymorphic dinucleotide microsatellite markers D17S796 and D17S579. Aims and objectives: To assess the association of MSI in OSCC with respect to tumor suppressor genes. To assess the association of MSI in relation to tumor suppressor genes with clinicopathologic findings in OSCC. Identification of prognostic microsatellite markers for early detection and management of OSCC. Materials and methods: DNA samples of histopathologically proven OSCC patients were extracted using standard protocols. Primers were designed based on functionality and relevance of PCR. Capillary electrophoresis was done to analyze the loss of heterozygosity (LOH) and MSI. Results: The MSI frequency of D17S796 denoting the locus close to p53(17p13.1) was 76.7%. The frequency of LOH in relation to D17S796 was 23.3% and the total MSI frequency was 80%. The MSI frequency of D17S579 denoting the locus close to BRCA1(17q12-21) was 60%. The frequency of LOH was 16.7%. The microsatellite alteration frequency including both MI and LOH was 66.7%. Significant correlation with tumor location (buccal mucosa) and MSI was found (p value <0.005). No correlation between clinicopathologic parameters and MSI was observed. Conclusion: Microsatellite alterations in relation to D17S796 and D17S579, located in proximity to tumor suppressor genes, have a strong association in oral carcinogenesis.

Role of PTEN Mutation in Oral Squamous Cell Carcinoma.

Aims and objectives: Several studies have been carried out on oral squamous cell carcinoma(OSCC) and its relationship with various genes. Though many studies have been conducted with regards to mutation profile of OSCC, the studies relating the role of PTEN mutation in OSCC in Indian has not yet been done till date. Aims and objectives: This particular study was done to relate the role of mutation of PTEN gene in OSCC cases n south Indian population. Most of the PTEN mutations are concentrated in exon 5 of the gene, this study is also concentrated to this same site. Material and methods: DNA samples of histopathologically proven OSCC patients were extracted using standard protocols. Primers were designed based on functionality and relevance for PCR. Sequencing was done to analyze mutation status. Results: With the study a novel mutation was found in the exon where the T allele was replaced by the C allele. We found four such cases in control population while there was only a single case with heterozygous CT genotype in the study population. This variant has not been reported till date. We have also screened three other variants rs 34904041, rs 35560700, rs34826144 which are monomorphic in our population. Study result showed that polymorphic variant of PTEN gene between cases and controls are not statistically significant. Conclusion: Initial observation from our study even though led to a novel mutation, functionality of this mutation and association with this disease has to be further investigated with larger sample size which could help us to find the real impact of this variant in the population as well as its association with OSCC.

Molecular Basis of A fibrinogenemia: Application for Prenatal Diagnosis in The Affected Families

Aims and objectives: To assess the association of MSI in OSCC with respect to tumor suppressor genes. To assess the association of MSI in relation to tumor suppressor genes with clinicopathologic findings in OSCC. Identification of prognostic microsatellite markers for early detection and management of OSCC. Materials and methods: DNA samples of histopathologically proven OSCC patients were extracted
Congenital afibrinogenemia is a rare autosomal recessive bleeding disorder with a prevalence of 1 in 1 million population, characterized by highly reduced or absence of fibrinogen in plasma. The disease is caused by defects in 3 genes FGA, FGB and FGG which encode for 3 polypeptide chains α, β and γ chains. We report the spectrum of mutations in 16 patients with fibrinogen deficiency detected by direct DNA sequencing. Mutations were detected in all the 16 cases; seven in FGA, six in FGB and 3 in FGG. Eleven were novel mutations which included 2 deletion mutations (FGA: c.22_30del; FGG: c.449_464del), 1 splice site mutation (FGA: c.G180A), 5 missense (FGA: c.T2387G, c. T1294C, FGB: c.C1132T, c.A820T; FGG: c. A947C), 2 indel (FGA: c.989_999delCCAGGATGGGACTT TTCTCATAAAAGinsCCAGG; FGG: c.73(−8)indel) and 1 insertion (FGB: c.819_820insT). Three recurrent mutations were also detected in two patients each (FGA: c.22_30del; c.G180A; FGG: c.A820T). Two families were subsequently offered antenatal diagnosis in the first trimester of pregnancy. In the first case, the fetus was heterozygous for c.C464T mutation similar to the parents, whereas in the second family, the index case was homozygous for the deletion mutation c.22_30 and the fetus was normal. In conclusion, molecular basis in a large series of patients with afibrinogenemia was detected and successfully applied for genetic diagnosis in two affected families.

P12
Coexistence of Glucose-6-phosphate Dehydrogenase Deficiency and Gilbert’s Syndrome with Hereditary Spherocytosis
Manu Jamwal1, Anu Aggarwal1, Neetu1, Prashant Sharma1, ManUpdesh Sachdeva2, Deepak Bansal1, Pankaj Malhotra1, Reena Das1

Department of Hematology1; Pediatrics (Hemato-Oncology Division)2; Post Graduate Institute of Medical Education & Research, Chandigarh

Background: Hereditary Spherocytosis (HS) is a common inherited hemolytic anemia with heterogeneous clinical presentation. This is attributable predominantly to the underlying genetic defect. Some of the variability may also be due to other co-inherited factors like enzymopathies, thalassemia and Gilbert’s syndrome (GS). An association of HS with glucose-6-phosphate dehydrogenase (G6PD) deficiency and GS in isolation has been reported previously. We describe for the first time three cases of HS with concomitant G6PD deficiency and GS. Aims and Objectives: To describe the phenotype and genotypic findings in cases of HS with coinheredence of both G6PD deficiency and GS. Materials and Methods: HS was diagnosed by incubated osmotic fragility test (OFT) and EMA dye binding test. Methylene blue reduction test was used for screening G6PD deficiency and was confirmed by RFLP. Gene specific PCR and sequencing for the promoter region of UGT1A1 was performed to confirm GS. Gap PCR was used to detect alpha triplication and deletion. Results: Case 1: 40 year old male presented with fever and severe hemolysis. He was diagnosed with G6PD deficiency. Findings suggestive of ongoing hemolysis in the form of splenomegaly and gallstones were noted during the follow-up period. Further testing revealed coexisting HS. Sanger sequencing of UGT enzyme showed homozygosity for [TA]7 repeats. Case 2: 25 year female with features of hemolytic anemia was initially diagnosed with HS. Patient was later found to be heterozygous for the G6PD Mediterranean and homozygous for [TA]7 repeats. Case 3: 15 year male patient presented with anemia and was diagnosed as HS. Patient was hemizygous for the G6PD Mediterranean and homozygous for [TA]7 repeats. Gap PCR for alpha gene deletion also revealed 4.2 kb deletion. Conclusion: Both G6PD deficiency and GS can coinherit with HS. In our three reported cases, the coinheritance did not lead to any significant alteration in the severity of anemia or increase in comorbidities. However, stressors which precipitate hemolysis in individuals of G6PD deficiency can exacerbate the anemia in these individuals. Therefore, more number of such cases needs to be studied and genotyped before concluding definitively regarding this association.

P13
Selection of reference genes for qRT-PCR based mRNA expression analysis of human reticulocytes from patients with hereditary spherocytosis
Anu Aggarwal1, Manu Jamwal1, Neetu1, Prashant Sharma1, ManUpdesh Sachdeva2, Pankaj Malhotra1, Deepak Bansal1, Reena Das1

1Department of Hematology, 2Department of Internal Medicine, 3Department of Pediatrics Post Graduate Institute of Medical Education and Research, Chandigarh, 160012

Background: Reference genes (internal control or housekeeping genes) are essential elements used to normalise mRNA levels across different samples in real-time (qRT) PCR experiments. Selection of these genes is critical as expression levels vary among tissues and may depend on conditions like the amount of starting material as well as efficiencies of RNA extraction or reverse transcription. Reticulocyte mRNA is an attractive target for gene expression profiling of erythroid cells. There is a paucity of literature on suitable reference genes for these specialized cells, especially with regard to patients with membranopathies. Aims and Objectives: To compare 8 potential reference genes for reticulocyte mRNA analysis by qRT-PCR in patients with hereditary spherocytosis (HS). Materials and Methods: Peripheral blood from 10 cases of moderately-severe HS and two normal individuals were studied using qRT-PCR. Eight candidate reference genes, namely, hemoglobin G2 (HBG2), membrane-palmitoylated protein 1 (MPP1), phosphoglycerate kinase 1 (PKG1), hypoxanthine phosphoribosyl transferase (HPRT1), β-actin (ACTB), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 18S, succinate dehydrogenase (SDHA) were studied. All except HBG2 have been used as internal controls in prior studies. ∆CT values were compared using Genorm, Normfinder, delta-CT and Bestkeeper software. Results: The most stable reference genes were HBG2, SDHA and MPP1 by BestKeeper, HPRT, HBG2 and SDHA by Genorm, and SDHA, HBG2 and HPRT by both delta-CT and Normfinder. When ranked comprehensively, HBG2 was identified as the most suitable reference gene (1.682) followed by SDHA (1.732). PKG1 (7.737) was the least stable

Indian Journal of Human Genetics | Supplement 1 | 2014 | Volume 20

S49
Pharmacogenetic Implications of Adducin rs4961 Gene Amongst Hypertensive Punjabi Population

Satbir Kaur, Harsimran Kaur, Jaspreet Kaur Bhullar* and Praveen P. Balgir*

Department of Human Genetics, * Department of Biotechnology, Punjabi University, Patiala.

Background: An inappropriate increase in peripheral vascular resistance relative to the cardiac output is a cause of essential hypertension. Numerous genetic markers have been identified in the regulation of blood pressure and essential hypertension. Alpha adducin (ADD1) is one such marker. ADD1 protein, found in the renal tubule, is involved in cellular signal transduction and interaction with other membrane skeleton proteins that affect ion transport across the cell membrane. Mutated ADD1 may affect the regulation of some factors in the Na transport system in the luminal part of the cell and hence, affects blood pressure. Diuretic agents are drugs that increase renal excretion of water and solutes (mainly sodium salt). The rs4961 (Gly460Trp) variant of the alpha-adducin gene influences the constitutive capacity of the kidney to reabsorb sodium, thus implying a modulation of the Blood pressure responsiveness to a diuretic, which inhibits such renal mechanism. Presence of Gly at the site results in more responsive therapeutic effect. Aims and objective: This study is carried out to survey Gly460Trp SNP prevalent among hypertensive patients from Punjab to predict their response to antihypertensive drugs such as diuretics. Material and methods: Blood samples from patients and normotensive individuals were collected with their informed consent under ethical clearance No ICEC/4/2011. Genomic DNA isolation was carried out by Salting out method. Genotyping of SNPs predicted by Insilco analysis of this gene has been carried out by PCR-RFLP analysis. Results: The study included 100 clinically diagnosed hypertensive patients with/without associated metabolic disorders and 100 normal healthy subjects. Results will be presented in presentation. Conclusion: The study was a way to “measure” the overall clinical impact of the ADD1 Trp allele distribution in Punjabi Population. The population variability then allows to estimate the size of the population that may be affected by the variable response to diuretics and help to discern the genetic mechanism.

A Study of Association of GSTM1, GSTT1, GSTP1, MDR1 and TPMT Gene Polymorphism with Susceptibility to Acute Lymphocytic Leukemia (ALL)

Satbir Kaur1, Shruti Caplash1, Raman Arora2, Devinder S. Sandhu3

1Department of Human Genetics, Punjabi University, Patiala, 2Mohan Dai Oswal Cancer Hospital, Ludhiana, 3Sandhu Cancer Centre, Ludhiana

Background: Detoxification enzymes play a significant role in biotransformation of many xenobiotics including environmental carcinogens, pollutants and drugs. Both the genetic polymorphisms and expression pattern of these genes may have a major impact on cancer susceptibility, individual variability in the prognosis, drug response and toxicity. We hypothesized that these polymorphisms might affect the risk of acute lymphocytic leukemia (ALL). Aims and Objective: To investigate the influence of GSTM1, GSTT1, GSTP1, MDR1 and TPMT gene polymorphisms in susceptibility to ALL. Material and methods: The frequencies of GSTM1 and GSTT1 homozygous deletions, GSTP1 (Ile105Val), MDR1 (3435 C>T) and TPMT*2 allele were examined in 27 ALL patients and 47 control subjects by allele specific PCR and PCR-RFLP method. Results: The frequency of individuals carrying GSTM1 null genotype was significantly higher among ALL patients (40%) as compared to controls (19%) (p=0.04). Although frequency of GSTP1 Val/Val genotype was higher among the patients (18%) in comparison to controls (6%), the difference was not statistically significant (p> 0.05). Individuals with both GSTM1 and GSTT1 null genotypes had a 3.12 higher risk for ALL. In case of MDR1 (3435 C>T), both homozygous and heterozygous mutant genotypic frequencies were more in controls than in ALL patients. Conclusion: The data suggests that individuals with GSTM1 null genotype appear to be more susceptible to ALL.

I/D Polymorphism in Angiotensin Converting Enzyme Gene and Its Pharmacogenetic Implications Amongst Hypertensive Punjabi Population

Praveen P. Balgir, Jaspreet Kaur Bhullar and Maleeka Sharma

Department of Biotechnology, Punjabi University, Patiala

Background: Renin angiotensin system (RAS) has been a drug target as the most important regulator underlying hypertension which is mediated by the key component; angiotensin converting enzyme (ACE). ACE a zinc metallo-peptidase converts the inactive decapeptide, angiotensin I to the active octapeptide, a potent vasoconstrictor angiotensin II. Hence ACE inhibitors are a main line of drugs developed to treat hypertension. It has been demonstrated that the ACE expression related to genetic variations. Presence or absence of 287bp element in ACE leads to Insertion/ deletion polymorphisms. The D allele of ACE gene has been correlated with high plasma level which has been observed to predispose individuals to disorders like Alzheimer disease, Diabetes mellitus, polycystic kidney disease, hypertension, coronary artery disease and pregnancy loss. The D/I and I/I genotypes results in intermediate or low plasma level of ACE. Aims and objectives: Present study sought to determine distribution of genotypic variability amongst hypertensive and normotensive Punjabi Population. It further explores variability in response to ACE inhibitors (Envas, Ramipril, Moxipril, Lisinopril) amongst various genotypes of I/D among Punjabi hypertensive subjects. Material and Methods: The study included 200 clinically diagnosed hypertensive patients with/without associated metabolic disorders and...
100 normal healthy subjects with their informed consent. Study has been approved by Institutional clinical ethical committee (ICEC/4/2011). Genotyping performed using PCR amplification analyzed on 10 % PAGE. Results: We found a 29 II, 106 ID and 65 DD in the hypertensive subjects and 25 II, 57 ID and 18 DD allele in normal subjects. The variability in response to ACE inhibitors was also observed amongst patients of various genotypes. Conclusion: The results suggested that ACE (D/D) genotypes are more prone for the development of hypertension. With these preliminary data at hand, the population-based screening risk assessment results that could possibly affect metabolism and efficacy of drugs that are commonly used by physicians; will be discussed in the presentation.

P17
Demographic and Clinical Profile of Major Depressive Disorder (MDD) Patients Attending AIIMS Psychiatry Department
Sweta Saha1, Shivani Pasi2, Piyoosh K singh1, Mamata Jena1, Kalpana1, Mamata Sood1, Rakesh K Chadda1, Vadlamudi R Rao1
1Department of Anthropology, University of Delhi, Delhi, 2Department of Psychiatry, All India Institute of Medical Sciences, Delhi

Background: Major Depressive Disorder has been considered as one of the leading causes of morbidity in India and worldwide. It has often been conceptualized as a response to overwhelming stress and associated psychiatric disorders. However, being a complex phenomenon, the etiology of Major Depression is still not very clear and Suicide as a major cause of mortality among MDD is one of the research questions being investigated. Aims and Objectives: The present study aims to understand the phenotypic characteristics of Depressive patients with and without suicide ideation. Material and Methods: 100 clinically established Major depressive disorder patients aged 18-65 years attending Psychiatric OPD at All India Institute of Medical Sciences were recruited and assessed for Psychiatric, Clinical and Sociodemographic variables. DSM-IV based MINI Screen, Mini International Neuropsychiatric Interview (MINI), Hamilton Depression rating Scale (HAM-D 17 item), Columbia-Suicide Severity rating Scale (C-SSRS) and Presumptive Stressful Life Event Scale (PSLES) were administered by clinical psychologist to assess Depression severity, suicidality and stressful life events among the patients. Clinical data included age at onset, total duration of illness, other comorbid disorders, Precipitating factors and family history while socio-demographic variables included Age, sex, ethnicity, marital status, literacy, occupation, monthly income and religion. Results: Among the total sample, 56% were having a current suicidal risk. Significant differences were also found among MDD with and without suicide risk behavior with respect to various demographic variables (Sex, marital status, occupation, education and Monthly family income) and psychiatric variables (Hopelessness, childhood adversity, past history, family history, Stress score). Conclusion: The findings of the present study suggest a possible sub-phenotype mediating the susceptibility for risk of suicide among MDD patients. It would possibly lead to better understanding of the disease etiology which could be used for improved effective medication of the patients.

P18
Current therapeutic approaches for Duchenne Muscular Dystrophy
Hemant Pandey1,2, Ved Prakash Singh1, Dhruv Kumar Singh1, Parimal Das1, Amit Kumar Rai1, Akhtar Ali1
1Centre for Genetic Disorders, Faculty of Science, Banaras Hindu University, Varanasi- 221005, U.P, 2Bhopal Memorial Hospital and Research Centre (Under ICMR), Bhopal, M.P- 462038,

Duchenne muscular dystrophy (DMD) is a devastating recessive X-linked muscle degenerative disease that affects 1 in 3600–6000 live male births. DMD caused by frame-shift deletions, duplications, or point mutations in the dystrophin gene (locus Xp21.2) which lead to an absence of or defect in the protein dystrophin. Dystrophin forms the dystrophin-associated glycoprotein complex (DGC) at the sarcolemma linking the muscle cytoskeleton to the extracellular matrix. When dystrophin is absent, muscle fibers become vulnerable to mechanical stretch and results in loss of independent ambulation with the progression of age of the patient. The molecular basis of DMD has been known for over 20 years. Many promising therapeutic strategies have since been developed in animal models. Human trials of these strategies have started, leading to the hope of definitive treatments for this currently incurable disease. Currently, a drug ‘glucocorticoid’ is the prominent medication and rehabilitative interventions have led to improvements in function, quality of life, health, and longevity, with children who are diagnosed today having the possibility of a life expectancy into their fourth decade. Several therapeutic approaches like gene replacement with virus vector, induction of protein expression by exon skipping, compensation with dystrophin surrogates and delivery of muscle stem cells or pluripotent stem cells have been investigated so far. The phase -3 clinical trial for Drisapersen, an antisense oligonucleotide for exon skipping could not meet the endpoint of statistically significant improvement, although it could still be most promising therapeutic approach. Recently, the modulation in the molecular pathways like VEGF/VEGFR pathway and constitutive activation of Notch pathway in animal models suggested the plausible cure of DMD. Here we present the updated information on the current therapeutics approaches for DMD.

P19
Host IL28B Genotype Plays an Important Role as a Predictor for Determining Response to IFN Therapy and Spontaneous Clearance in HCV Infected Thalassemia Patients
Rushna Firdaus, Aritra Biswas, Kalol Saha, Maitreyee Bhattacharya, Prosanto Choudhury, Pranator Chakraborty, Provash Chandra Sadhukhan
ICMR Virus Unit, Kolkata; I.D and B.G Hospital Campus, GB-4 (East Wing), 1st Floor, 57; Dr. Suresh Chandra Banerjee Road, Beliaghata, Kolkata-700010
Background: β-thalassemia major have a higher risk of hepatitis C virus infection due to repeated blood transfusions. Single Nucleotide Polymorphisms at rs 1297986 C/T and rs 8099917 T/G are strongly associated with Sustained Virological Response in hepatitis C patients.

Aims and Objectives: To determine the potential effects of SNPs at rs1297960 and rs8099917 variation on outcome to HCV infection in a natural as well as IFN treated settings in β-thalassaemic patients.

Material and Methods: 250 HCV sero-reactive thalassaemic patients were assessed for host and viral genotypic analysis. 33 patients were administered Peg IFN- ribavirin therapy. Viral genotype was determined by nested RT-PCR of viral genome followed by direct sequencing methods. Host IL28B genotyping was performed using Real Time PCR based SNP analysis.

Results: 61% individuals were male, 39% were female. Out of 250 seropositive individuals, 59.2% were found to be RNA positive. Out of the 250 individuals, 90 (36%) individuals achieved sero-clearance without any IFN treatment, out of them 41 (45.5%) reported favourable CC allele at rs12979860, 22 (24.4%) individuals reported partially favourable CT genotype, 27 (30%) reported unfavourable TT genotype. C allele frequency was 0.58 whereas T allele frequency was 0.42. The distribution of allelic frequencies was in accordance to the Hardy–Weinberg equilibrium. In cases of IFN treated patients also, CC allele was predominant with 21 (63.6%) individuals carrying the favourable allele, 10 individuals reported CT (30.3%) whereas 2 (6.1%) individuals reported unfavourable TT genotype.

Conclusion: IL28B CC genotype has a marked impact in the natural clearance of HCV in thalassaemia patients, especially in low age group.

P20

BMPR1B Signalling in HEK293 Cells

Chandra Bhan Singh, Akhtar Ali

Centre for Genetic Disorders, Faculty of Science, Banaras Hindu University, Varanasi, 221005, (U.P.) India

Limb deficiency has found in 3-8 per 1000 births, whereas congenital upper limb anomalies are second abnormalities in frequency and account for 10% of all malformations at birth. Limb development has been studied for decades, but very little is known about the molecular networks which regulate limb development. Since, none of the model till date is able to unravel the precise and accurate molecular mechanisms of limb development. Therefore, there is need to establish the signaling pathways that interplay during limb bud formation and digit patterning. Limb development are well-coordinated process regulated by fibroblast growth factors (FGFs) (Delgado et al., 2008), bone morphogenetic proteins (BMPs) (Ganan et al., 1996) transforming growth factor-beta (TGF-β) (Ganan et al., 1996), Msx-2 (Marazzi et al., 1997), Wnt (Grotewold and Ruther, 2002), Shh (Buscher et al., 1997), retinoic acid (Khan and Hales, 2006), and other signaling pathways.

BMPs are multifunctional growth factors belonging to the TGF-β multigene family. BMPs act as a central role during limb formation. It has been reported that BMPs may play different and even antagonistic roles at different stages of limb development. The BMP receptor family of transmembrane serine/threonine kinases are involved in endochondral bone formation and programmed cell death (PCD) during embryogenesis. However the identities of the intracellular mediators of these signals are unknown. The aim of this study is to find out the particular signals that transduce apoptosis and chondrogenesis. To fulfi the objective BMPR1B gene has been knocked-down in HEK293 cells using 21 nucleotide long siRNA and confirmed the silencing by quantitative real-time PCR (SYBR Green) and western blot. The genes regulated by BMPR1B will be identified by whole-genome expression microarray followed by Real-Time PCR and Western blotting experiments. The results will be discussed in the presentation.

P21

Genetic Factors Related to Unconjugated Hyperbilirubinemia Amongst Adults.

Ashish S. Chiddarwar, Roshan B. Colah, Kanjaksha Ghosh, Malay B. Mukherjee.

National Institute of Immunohaematology (ICMR), 13th Floor NMS Building, K.E.M Hospital Campus, Parel, Mumbai-400012.

Background: Gilbert’s syndrome (GS) is a benign unconjugated hyperbilirubinemia occurring in 2-10% of the general population, and often detected in adulthood during routine blood tests, which unmask the hyperbilirubinaemia. Earlier studies suggested that (TA)n repeat polymorphism in the UGT1A1 gene promoter is associated with GS. However it remains unclear whether polymorphisms in other genes involved in bilirubin metabolism pathway are associated with hyperbilirubinemia.

Aims: The present study was undertaken to investigate the genotype and allele frequencies in four bilirubin metabolism genes (UGT1A1, OATP2, HMOX1 and BLVRA) and their association with hyperbilirubinemia.

Material and Methods: Genotyping of 16 SNPs was performed in 150 adults with hyperbilirubinemia and 115 controls by PCR-RFLP, Gene Scan analysis and direct DNA sequencing.

Results: Genetic polymorphisms of the UGT1A1 promoter, specifically the T-3279G phenobarbital responsive enhancer module and (TA)7 dinucleotide repeat as well as the intron and coding region variants of the OATP2, HMOX1 and BLVRA genes were significantly higher among the cases than the controls. Further, nearly 58% of the cases showed the presence of more than 4 variants as compared to 21% of the controls and the mean total serum bilirubin levels also increased according to the number of variants co-expressed. Exon-wise sequencing of the UGT1A1 gene revealed a variant at nt 6846 A àG in exon 2, with a predicted amino acid change of Ile à Val at codon 322 in heterozygous condition among the cases.

Conclusions: This study demonstrates that polymorphisms in the bilirubin metabolism genes had a significant effect on bilirubin levels and could be genetic risk factors for hyperbilirubinemia.

P22

Mutational screening of PINK1 and LRRK2 in Indian Parkinson disease patients

Tamali Haldar¹, Vivek Sharma² and Parimal Das¹

¹Centre for Genetic Disorders, Faculty of Science, ²Dept. of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi- 221 005, India, E-mail: parimal@bhu.ac.in
Background: Parkinson’s disease (PD; OMIM #168600) is the most common neurodegenerative movement disorder affecting 1 to 2% of the population above age of 65 years with higher incidence in male than females. The vast majority of PD cases are sporadic in nature. Molecular genetic analyses have identified more than 500 distinct DNA variants in five disease genes associated with familial Parkinson disease; 〈α-synuclein (SNCA), parkin (PARK2), PTEN-induced putative kinase 1 (PINK1), DJ-1 (PARK7), and Leucine-rich repeat kinase 2 (LRRK2). Aims and Objectives: Identification and characterization of causal genetic mutation underlying Parkinson’s disease in North-Indian patients. Objectives: Mutational screening of candidate genes viz. autosomal dominant LRRK2 and autosomal recessive PINK1 in North Indian patient cohort. Material and Methods: A total of 100 clinically diagnosed PD patients apparently sporadic in nature including 28 early onset (<40 year) were enrolled. Peripheral blood was collected from patients with their informed consent. Genomic DNA was isolated for performing PCR followed by DNA sequencing. Exons encoding Roc (Ras of complex proteins), COR (COOH terminal of Roc) and Kinase domains of LRRK2 were screened in 60 patients irrespective of the age of disease onset and all exons of PINK1 were screened in 28 early and 20 late onset patients. Results: A novel homozygous nonsense variant Gln267Stop in kinase domain of PINK1 resulting a truncated protein was detected in a single PD patient, while it was absent from the rest 99 PD patients and 50 age matched healthy controls. Another reported heterozygous mutation resulting Arg276Gln was observed in two different patients in addition to 6 SNPs in the same PINK1. Screening of LRRK2 results in identification of two novel synonymous changes viz. Tyr1527 and Val1615 and a novel intronic deletion IVS36+67 del A. In addition to these four mutations reported earlier including two nonsynonymous (Pro1542Ser and Ser1647Thr) and two synonymous (Gly1624 and Lys1637) along with two intronic SNPs (rs1896252 and rs7137665) were observed. Conclusion: Mutations of PINK1 and LRRK2 are prevalent in northern Indian PD patients. Functional study of the novel mutations those identified in the present study will provide the opportunity to understand the molecular mechanism of Parkinson’s disease pathogenesis. In vitro study for functional validation of the novel Gln267Stop is underway.

P23
Mutational screening of PKD1 in North Indian patients
Sonam Raj1, R G Singh2 and Parimal Das3
1Centre for Genetic Disorders, Faculty of Science, 2Dept. of Nephrology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, INDIA

Background: Polycystic kidney disease (PKD) is a systemic disorder and prime cause of end stage renal disease (ESRD) in renal patients. Linkage analysis revealed some closely linked loci two of which are identified as PKD1, PKD2 and an unidentified locus to Autosomal Dominant Polycystic Kidney Disease (ADPKD). ADPKD is genetically heterogeneous, Mendelian disorder, shows late onset and contributes 8-10% cases of End Stage Renal Disorders (ESRD). Protein product of these identified candidate genes are central regulatory molecule of different signaling pathways controlling cell homeostasis and function. Aim: Establishing quick DNA unique diagnostic test/s for PKD for specific Indian population. Objectives: (1) Mutational screening of PKD1 in clinically diagnosed PKD patients (2) Finding the spectrum and occurrence of genetic mutations in PKD1. Materials and methods: After informed consent, family history, clinical reports and blood sample was collected from 30 patients. DNA was extracted from collected peripheral blood for further molecular diagnosis. Mutational screening of PKD1 was performed using PCR followed by DNA sequencing. Results: In 3’ single copy region of PKD1, four reported likely neutral (T3510M, A3512V, D3782D, IVS41+5,+6insGGG), one definitely pathogenic (P3582fs22X) and one novel likely neutral (A3772A) sequence variations were detected. Remaining 5’ duplicated region have shown eleven reported likely neutral (A341A, L373L, IVS12-15C>T, A1516T, A1555A, A1724A, V2026V, R2200C, L2389L, L2481L, IVS30+54A>G), two novel pathogenic (S383X, c.9899delA) and two novel nonpathogenic (S1081L, V1800V) sequence variants. Conclusions: Occurrence of mutations was more (2X) in duplicated region of PKD1 compared to single copy region. Presence of more than one likely neutral variant in single individual suggests allelic heterogeneity which may contribute in variable expressivity at individual level while other pathogenic mutations leading to frame shift and truncated protein (polycystin1) production ultimately affect the cellular function and hence causes to disease manifestation.

P24
Association of gene polymorphisms with Chronic Obstructive Pulmonary Disease in North Indian Population
Akancha Sahu1, Suchit Swaroop1, Surya Kant1 and Monisha Banerjee1
1Molecular & Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow-226007. *Department of Pulmonary Medicine, King George’s Medical University.

Background: Chronic Obstructive Pulmonary Disease (COPD) is characterized by progressive decline in lung function and abnormal inflammatory response of lungs to noxious particles and gases. Two pro-inflammatory cytokines, IL-1RN and IL-6, expressed in airway smooth muscle cells and fibroblasts of lungs play important roles in pathogenesis of COPD. Aims and objectives: The aim of present study was to assess the association of IL-1RN, IL-6 and ADAM33 gene polymorphisms with COPD. Material and Methods: COPD patients and healthy sex/age matched controls (n=100 each) were subjected to genotyping of IL-1RN VNTR (Intron 2), IL-6 -597G/A (rs1800797), ADAM33 S2 (rs528557) and F1+ (rs511898) by polymerase chain reaction (PCR) and PCR-restriiction fragment length polymorphism (PCR-RFLP). Genotype and allele frequencies were calculated and statistically analyzed by chi-square using SPSS (ver. 21.0). Haplotype analysis and gene- gene interaction, pairwise linkage disequilibrium (LD) based on ‘D’ statistics and correlation coefficients (r2) of frequencies were analyzed using SHEsis.
Cytokine Gene Polymorphisms and their Association with Cervical Cancer: A North Indian Study

Maneesh Kumar Gupta1, Renu Singh2, Monisha Banerjee3
1Molecular & Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow - 226 007, India. 2Department of Obstetrics and Gynecology, King George’s Medical University, Lucknow-226003.

Background: Inflammation, angiogenesis and thrombosis are involved in cancer development leading to the production of cytokines, growth factors and adhesion molecules. They promote tumor progression by signaling and providing optimal conditions for cervical cancer. Aims and Objectives: The present study was undertaken to evaluate association of cytokine gene polymorphisms with cervical cancer. Material and Methods: Genotyping of four SNPs viz. IL-1RN VNTR (in intron 2), IL-1β-511C/T (rs16944), IL-6-597G/A (rs1800797) and TNF-α-308G/A (rs1800629) was carried out in 100 each of cervical cancer patients and healthy age matched control subjects by polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism (PCR-RFLP). Genotype and allele frequencies were calculated and statistically analyzed by chi-square (χ2) using SPSS (ver. 21.0). Gene-gene interaction, pairwise linkage disequilibrium (LD) based on ‘D’ statistics and correlation coefficient (r2) of frequencies was analyzed using SHEsis (ver. Online). Results: Epidemiological studies have shown that women of age >40 years have higher risk of cervical cancer due to greater susceptibility of cervical epithelium to Human Papilloma Virus (HPV) the reason during adolescence, improper hygiene and poor socio-economic conditions. Genetic studies showed that genotypic frequencies of IL-6-597G/A and TNF-α-308G/A as well as allelic frequency of IL-6-597G/A showed significant association with cervical cancer in North Indian population (P<0.001). Gene-gene interaction analysis showed that G T G I* and G T A I* combinations of all four SNPs taken together increase the risk upto 11 and 5 times respectively in the study population. Conclusions: Genetic polymorphisms in associated genes can be used as markers to predict cervical cancer susceptibility. The knowledge of risk alleles will enable individuals to take precautionary measures before hand and prevent or delay the onset of disease.
Background: Choroidal Neovascularisation (CNV) or wet AMD mostly is a late sequel of dry AMD which is result of drusen deposition and characterized by loss of central vision if unchecked. The pathology develops owing to development of new blood vasculature between the bruchs’ membrane and retina which is leaky and leads to retinal detachment and hence total vision loss. Our preliminary work in mouse model and other published reports in AMD patients have substantiated this finding reiterating the fact that certain myeloid cells are increased in human AMD. Hence there is imperative need to explore this myeloid cell population.

Aims & Objectives: This is a prospective study targeting to find the systemic hematomelical changes in AMD/CNV. Study murine CNV with to identify the any changes systemically in blood/lymphnodes. Compare changes in blood of aged patients suffering from dry AMD, CNV with healthy age matched controls. Material and Methods: BD FACS Cantoll will be used to conduct all the flowcytometry using standard antibodies from commercial vendors. Commercial ELISA kit would be used to asses levels of VEGF and other growth factors or cytokines. Results: The mouse model clearly showed increase in the CD11b population of cells further more these cells had activation markers CD69. Studies from other groups have also shown increase in CD11b cells which were CD200 positive. This is an ongoing prospective study and several myeloid and lymphoid cells will be visited in great molecular detail. Conclusion: Preliminary studies suggest good correlation between murine and human CNV. While the data are from the western world they need to be correlated in Indian population. Also a detailed dissection of the changes in the CNV patient’s blood is warranted and is being pursued. This study might reveal certain key targets for better treatment modalities of the disease.

P29

Polymorphisms in TP53, MDM2, HIF1a, BRCA1 and Rare Chromosomal Anomalies in a Male Breast Cancer Patient and His Unaffected Son

Vasudha Sambyal¹, Kamlesh Guleria¹, Sarika Sharma¹, Ruhi Kapahi¹, Mridu Manjari², Meena Sudan³, Manjit Singh Uppal¹, Neeti Rajan Singh⁴

¹Human Cytogenetics Laboratory, Human Genetics Department, G.N.D.U., Amritsar, Punjab, India. ²Department of Pathology, ³Department of Radiology, ⁴Department of Surgery, Sri Guru Ramdas Institute of Medical Sciences and Research, Vallah, Amritsar, Punjab, India.

Background: A first degree relative of a cancer patient may have 2-3 fold higher risk of developing cancer at same site as family members tend to share genetic background along with environment. **Aims and objectives:** In the present study genetic risk for cancer was estimated in the healthy male offspring of a Male breast cancer (MBC) patient using classical cytogenetic analysis, SNP-A and study of 13 polymorphisms in four genes i.e., four in BRCA1 (c.2612 C>T, c.190 T>C, 1307del T, g.5331G>A), five in TP53 (p.R72P, PIN3 16 bp Ins, p.P47S, p. R213R, r.13494q>a), three in HIF1a (g.C1772T, g.G1790A, g.C111A) and one in MDM2
(309T>G). **Material and Methods:** A 35 year old healthy male and his 60 year old father with infiltrating ductal carcinoma of breast and a family history positive for cancer were taken as study subjects. From each subject, G-banded karyotypes were made after standard 72 hour peripheral blood culture. Genomic DNA was extracted by standard phenol-chloroform method. The DNA samples were analyzed using Illumina Human Cyto SNP array and data was analyzed using Karyostudio v1.2. Genetic polymorphisms were assessed by PCR-RFLP. **Results:** Karyotypic analysis by G-banding showed increased aberrations in MBC patient (79.9%) than his healthy son (73.9%). The SNP-A of MBC patient showed a loss of Yq11.22.2 and gain in Yq11.22.1 in the Azoospermia (AZF) region. The son had rare copy neutral LOH in adrenal hyperplasia associated region on 6p22.3-6p21.2, duplication in Yp11.2 and Yp11.3 and deletion in 7q11-21 pericentromeric region .Among the SNPs analyzed, the MBC patient and his son were homozygous for MD2 (309T>G) and either homozygous for wild type allele or heterozygous for rest of the studied polymorphisms. **Conclusions:** SNP-A revealed rare chromosomal anomalies in the MBC patient and his healthy son which had not been previously reported in breast cancer patient. Coupled with increased cytogenetic aberrations it indicates a higher genetic risk for the son.

P30

Determination of RHD Zygosity Based on Most Probable Genotype and PCR-SSP

Disha Parchure, Swati Kulkarni, K. Vasantha, K. Ghosh

National Institute of Immunohaematology (ICMR), Mumbai, India

Background: In RhD negative women with anti-D alloimmunisation, determination of paternal RHD zygosity is useful in clinical practice for prenatal diagnosis and evaluation of risk of hemolytic disease of the newborn. Currently in India, paternal RHD zygosity assignment is inferred from serologic phenotypes by testing with antisera against C, c, D, E and e antigens of Rh blood group system. From the antigen phenotype expressed and the frequency of these antigens in Indian population the Most Probable Genotype (MPG) is deduced and thus the D zygosity. In all Rh phenotypes if the first MPG is homozygous for the D antigen, then the second MPG is heterozygous and vice versa. Hence the discrimination between RHD+/RHD+ and RHD+/RHD- is indirect and therefore not very accurate and reliable. D zygosity determination in populations studied so far has shown varying results between serological and molecular genotyping. **Aims:** To determine RHD antigen zygosity by serology (MPG) and Polymerase Chain reaction using Sequence Specific Primers (PCR-SSP) in blood donors. **Methods:** Three hundred and fifty four donors from Mumbai blood bank were tested with anti-C, anti-c, anti-D, anti-E and anti-e and MPG of the individuals deduced. Extracted DNA was tested by the PCR-SSP method which allows the detection of the hybrid Rhesus box and thus the determination of the D zygosity. **Results:** Out of three hundred and fifty four donor samples tested, 45.5% were homozygous and 35% were heterozygous for D antigen by serology and PCR-SSP. 19.5% of cases gave discrepant results by the serological and molecular genotyping. **Conclusion:** This is the first study comparing the RHD zygosity by Rhesus box PCR-SSP with MPG in Indian population. In the discrepant cases it can be presumed that the second MPG by serology is the actual genotype. The results in this study show that PCR-SSP should replace MPG in prediction of the D zygosity. The availability of molecular tests for assessing RHD zygosity can be used for genetic counseling for better management of sensitized pregnant RhD negative women.

P31

Vascular Endothelial Growth Factor (VEGF) Gene Polymorphisms and Breast Cancer Risk in Punjabi Population from North West India

Kamile Guerla1, Ruhi Kapahi1, Vasudha Sambhali1, Mridu Manjari2, Meena Sudan3, Manjit Singh Uppal4, Neeti Rajan Singh4

1Human Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India. 2Department of Pathology, 3Department of Radiotherapy, 4Department of Surgery, Sri Guru Ram Das Institute of Medical Sciences and Research, Amritsar, Punjab, India

Background: Vascular endothelial growth factor (VEGF), an endothelial cell specific mitogen, has been implicated as a critical factor influencing tumor related angiogenesis. **Aims and objectives:** To evaluate the association of seven VEGF promoter polymorphisms with breast cancer risk in Punjabi population from North West India. **Materials and Methods:** We screened DNA samples of 102 sporadic breast cancer patients and 102 unrelated healthy, gender and age matched individuals for seven VEGF promoter polymorphisms [-417C/T, -172C/A, -165C/T, -160C/T, -152G/A, -141A/C and -116G/A] by direct sequencing. **Results:** The frequency of GG, GA and AA genotype of -152G/A polymorphism was 26.47 vs 38.34%, 46.08 vs 51.96% and 27.45 vs 9.80% respectively in patients and controls respectively. VEGF -152 AA genotype was significantly associated with increased risk for breast cancer (OR=4.04, 95%CI, 1.69-9.68, p=0.001; recessive model OR=3.48, 95%CI, 1.59-7.63, p=0.001). For VEGF -116G/A polymorphism, G and A allele frequencies were 65.2 vs 76.47% and 34.8 vs 23.53% in patients and controls respectively. Individuals having -116AA genotype (OR=3.40; 95%CI, 1.24-9.37; p=0.014) and A allele (OR=1.73; 95%CI, 1.12-2.67; p=0.012) were associated with increased risk for breast cancer. There was significantly decreased frequency of CT genotype (4.90 vs 18.63%; p=0.002) and T allele (2.45 vs 9.31%; p=0.003) of -165C/T polymorphism among breast cancer patients as compared to controls. Significant reduced risk for breast cancer was observed with AC genotype (OR=0.34, 95%CI, 0.14-0.86; p=0.019) and C allele (OR=0.37; 95%CI, 0.15-0.89; p=0.023) of -141A/C polymorphism. We did not observe association of VEGF -417T/C, -172C/A, -160C/T polymorphisms with breast cancer risk in the studied subjects.
(p>0.05). **Conclusions:** The VEGF -152G/A and -116G/A polymorphisms were found to be significantly associated with increased risk for breast cancer while -165C/T and -141A/C polymorphisms were found to be associated with decreased risk for breast cancer in Punjabi population from North West India.

P32

Cytogenetic Aberrations as a Measure of Genotoxity in Rural Population Living near River Beas

Jageet Kaur, Vasudha Sambyal and Kamlesh Guleria

Human Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab 143005, India.

Background: Waters of the rivers Satluj and Beas in Punjab are reportedly polluted. Environmental impacts and occupational exposures are frequently assessed through cytogenetic markers. Chromosomal abnormalities are the commonly used biomarkers for human biomonitoring studies as chromosomal aberrations may act as the intermediate processes in the pathway of the progression to any genetic disorder. **Aims and objectives:** The present study was an attempt to determine the chromosomal instability with special reference to long term genotoxic effects of exposure to polluted water, if any, in rural subjects living near river Beas in Punjab. **Material and Methods:** In this study, 48 rural subjects (24 males and 24 females) living on bank of river Beas of Punjab, were screened for the cytogenetic aberrations in their cultured peripheral blood lymphocytes. Standard in-vitro cell culturing technique of 72 hours in RPMI-1640 medium in the presence of phytohemagglutinin (PHA-M) was used. In each case, 100 metaphases were examined for numerical as well as structural aberrations and karyotypes were made according to ISCN 2009. **Results:** A large number of cytogenetic aberrations including aneuploidy, polyploidy, translocations, marker chromosomes, ring chromosomes, dicentric chromosomes, premature centromeric division, interstitial deletions, acrocentric associations and terminal deletions were seen in subjects residing nearby river Beas. Chromosome gaps and breaks were found repeatedly in chromosome 1, 2, 3, 4, 5, 6, 7, 8, 10, 12 and 17 both in males as well as females. However, frequency of breaks and gaps were more in case of females as compared to males (p<0.05). **Conclusion:** Increased chromosomal instability in the subjects residing near river Beas indicated that they might be at a higher genetic risk.

P33

ABO Blood Group and Risk of Coronary Artery Disease.

Prerna K. Chawla1, Chandrashekhar K. Ponde2, Rajesh M. Rajani2, Tester F. Ashavaid1,2

1Research Laboratories, 2Department of Laboratory Medicine, 3Department of Cardiology. P.D. Hinduja Hospital & Medical Research Centre, Mahim, Mumbai-400016, India. Email: dr_tashavaid@hindujahospital.com/tashavaid@gmail.com

Background: Human blood group antigens are glycoproteins and glycolipids expressed on the surface of red blood cells and a variety of human tissues including epithelium, platelets and vascular endothelium. Plasma levels of various metabolites like IL-6, adhesion molecules, selectins, von-Willebrand factor, hs-CRP etc are influenced by the type of blood group. **Aims and Objectives:** The objective of the study was to test the genetic variants that determine the blood type A1 (normal sequence), A2 (deletion of C), B (G803C) and O1 (deletion of G) and associate them with coronary artery disease (CAD). Additionally, hs-CRP levels were recorded to assess the risk of CAD. **Material and Methods:** 160 patients visiting the P.D. Hinduja Hospital and Medical Research Centre’s catheterization laboratory were recruited for the study. These included 80 angiographically verified CAD patients age and gender matched with 80 angiographically verified controls. Genotyping was performed by Allele specific PCR & hs-CRP levels were recorded using Beckman Coulter DXP Analyser. **Results:** Frequency of the A1 allele (Cases – 18% ; Controls – 19.3%) and O1 allele (Cases – 34.3% ; Controls – 53.1%) was observed to be higher in controls over the cases. Frequency of A2 allele (Cases – 6.8% ; Controls – 4.3%) and B allele (Cases – 40.6% ; Controls – 22.5%) was seen higher in cases over the controls. Patients of the B blood group showed about two times higher hs-CRP levels in cases over the controls while the AB blood group patients had hs-CRP levels higher in controls over cases. **Conclusion:** This is an ongoing study and the preliminary results suggest the B blood group to be a risk marker for CAD while the O1 blood group to be atheroprotective.

P34

Gene Variants of Pro-Oxidant and Antioxidant Genes in Indian Coronary Artery Disease Patients

Sripriya Natarajan1, Chandrashekhar K. Ponde2, Rajesh R. Rajani2 and Tester F. Ashavaid1,3

Research Laboratories1, Dept. of Cardiology2, Dept. of Lab Medicine3, P.D. Hinduja National Hospital & MRC, Mahim, Mumbai. E-mail: dr_tashavaid@hindujahospital.com/tashavaid@gmail.com

Background: Oxidized low density lipoproteins (ox-LDL) induce atherosclerosis by triggering an inflammatory cascade within the vascular wall. The role of genetics with oxidative stress in multifactorial coronary artery disease (CAD) has not been substantially explored in the Indian population. **Aims and Objectives:** The aim of the current study was to analyze the correlation of the pro-oxidant gene variants of the pro-oxidant genes, myeloperoxidase (MPO) and cytochrome b-245, alpha polypeptide (CYBA) of the NADPH oxidase complex and antioxidant genes, manganese superoxide dismutase (SOD2) and catalase (CAT) with the development of coronary artery disease. **Material and Methods:** A total of 150 angiographically proven cases and 150 age and gender matched angiographically negative, proven controls who underwent coronary angiography at the catheterization lab in P. D. Hinduja National Hospital & MRC were included into the study. Their clinical data along with traditional risk factors for CAD were noted down. Genotyping of MPO-463G>A variation was done using PCR-RFLP, while SOD2 47T>C, CAT -262C>T and CYBA G640A were genotyped by Tetra-ARMS PCR. **Results:** Family history of CAD was
To study the association of known pharmacogenetic data along with clinical parameters would suggest that polymorphisms in lipid and statin pathway for CYP3A5, ABCG5 and ABCB1 variants. In LDL-C as compared to wild type. No differences were observed (rs2306283, rs11045819) variant allele showing higher reduction (rs4986910). We found for both the polymorphisms of SLCO1B1 (−30±1% Vs. −27±1.3%). However we did not observe any greater reduction in LDL-C as compared to AG+GG genotype reduction in LDL-C. We also see that, for CYP3A4 promoter LDL-C reduction, while wild type allele (A) showing 32±4% CYP7A1 (rs3808607) polymorphism is associated with 26±1.8% equilibrium. Our results show that, the variant allele (C) for determined for subjects.

10 mg of atorvastatin for 8 weeks. Baseline & after 8 weeks (AS‑PCR) in 100 hypercholesterolemic patients, treated with by using multiplex allele specific‑polymerase chain reaction therapy. Several studies have reported genetic variation contributes to variable reduction in low-density lipoprotein-cholesterol (LDL-C) levels in response to atorvastatin therapy. Genetic variations in genes involved in statin and lipid metabolism are proposed as important determinants of statin response. Aims and Objectives: To study the association of known variations in SLCO1B1, CYP3A4, ABCB1, CYP3A5, ABCG5 and CYP7A1 genes and lipid levels in response to atorvastatin therapy. Material and Methods: Genotypes were determined by using multiplex allele specific-polymerase chain reaction (AS‑PCR) in 100 hypercholesterolemic patients, treated with 10 mg of atorvastatin for 8 weeks. Baseline & after 8 weeks low-density lipoprotein cholesterol (LDL-C) levels were determined for subjects. Results: The genotype distribution for all polymorphisms investigated was in Hardy–Weinberg equilibrium. Our results show that, the variant allele (C) for CYP7A1 (rs3808607) polymorphism is associated with 26±1.8% LDL-C reduction, while wild type allele (A) showing 32±4% reduction in LDL-C. We also see that, for CYP3A4 promoter variant (rs2740574), individuals with AA genotype exhibited a greater reduction in LDL-C as compared to AG+GG genotype (−30±1% Vs. −27±1.3%). However we did not observe any difference in LDL-C reduction for CYP3A4 missense variant (rs4986910). We found for both the polymorphisms of SLCO1B1 (rs2306283, rs11045819) variant allele showing higher reduction in LDL-C as compared to wild type. No differences were observed for CYP3A5, ABCG5 and ABCB1 variants. Conclusion: These results suggest that polymorphisms in lipid and statin pathway genes are associated with variable reduction in LDL-C. Inclusion of pharmacogenetic data along with clinical parameters would assist in atorvastatin dosage in Indian patients.

P36 Evidence for expression of ARL15, a novel GWAS identified G protein in Rheumatoid Arthritis Synovial Fibroblasts Sujit Kashyap1, Patralika Chattopadhyay2, Uma Kumar3, B K Thelma4

1Department of Genetics, University of Delhi South campus, Benito Juarez Road, New Delhi Email: sujitkashyap2003@gmail.com
2Clinical Immunology & Rheumatology Service, All India Institute of Medical Sciences, Ansari Nagar, New Delhi

Rheumatoid arthritis (RA) is an inflammatory autoimmune joint disorder that affects more than 1% population globally. A genetic basis for this disease is undisputed with HLA being the major risk factor. Results from several recent Genome-wide association studies (GWAS) of RA in Caucasian populations and their meta-analysis have identified many more risk variants but their contribution to our understanding of the disease biology and for developing effective treatment remains limited. Recently, in the first ever GWAS on RA from north India, we identified a novel gene ARL15, a small G protein to be associated with RA. ARL15 variant has previously been shown to be correlated with levels of adiponectin, a cytokine involved with RA. Therefore, in this study, we investigated its possible expression in Rheumatoid arthritis synovial fibroblast (RASF), which is a major aggressive cell type implicated in cartilage and bone degradation in RA. RASF was isolated from the synovial fluid collected from three RA patients undergoing total knee replacements at AIIMS, New Delhi with informed consent and institutional ethical committee clearance. Primary cultures established using these cells was first confirmed to be true RASF by Fluorescence- Activated Cell Sorting. They were then tested for the expression of ARL15 using multiple approaches. Western blot analysis and RT PCR confirmed the expression of ARL15 in RASF. Considering the pharmacological potential of G proteins, our novel preliminary finding of ARL15 expression in RASF seems to hold promise for lead molecule development.

P37 Identification and Characterization of D Variants in Apparently RhD Negative Individuals G.Vidya, Swati Kulkarni, K. Vasantha, K. Ghosh

National Institute of Immunohaematology, Parel, Mumbai

Background: RhD variants are of clinical importance and should be identified as they may produce anti-D antibodies upon exposure to normal D positive red cells either through transfusion or pregnancy. RhD variant individuals are reported as RhD negative or positive depending on the commercial monoclonal anti-D reagents and techniques used in different laboratories. Weak D and Partial D are the most commonly encountered RhD variants. Weak D are quantitative variants with less number of D antigenic sites while partial Ds are qualitative variants which lack one or more epitopes of D antigen. A panel of monoclonal anti-D antibodies can be used for serological identification and characterization of D variants.
Aims and objectives: The aim of this study is to identify D variants amongst apparently RhD negative individuals reported as RhD negative in their respective hospitals. **Material and Methods:** A total of 1400 apparently RhD negative individuals, were tested by ALBAclone Advanced Partial RhD typing kit (12 epitope specific monoclonal anti-D reagents) and Rh phenotyping was done using anti-C, c, D, E, and e antisera. Depending on the reactivity pattern with the anti-D reagents, weak D type 1 & 2 and 15 common partial D variants can be identified. **Results:** 3.57% of these apparently RhD individuals were identified as D variants. 93% of D variants could be characterized with this kit. Out of 1400 RhD negative individuals tested, 161 (11.5%) were “C” antigen positive. 31% of C positive apparently D negative individuals were identified as D variants. **Conclusion:** RhD variant individuals were reported as RhD negative by routine commercial monoclonal anti-D reagents. Screening for the presence of ‘C’ antigen in apparently RhD negative individuals and advanced partial D typing kit was very useful for identification of D variants and confirmation of RhD status.

P38

BRCA 1 and 2 Mutations Detection by NGS in Breast Cancers Patients – Pilot Study.

Jaya Vyas, Amanda Gomes, Mandar Nadkarni, Varsha Vadera

Dept of Laboratory Medicine, Kokilaben Dhirubhai Ambani Hospital, Four Bunglows, Andheri (West), Mumbai - 400 053

Background: Breast cancer is the commonest cause of cancer death among females, accounting for 23% of the total cases and 14% of the total cancer deaths. While most breast tumors are sporadic, about 5 to 10% are caused by germ line mutations in BRCA1 and BRCA2. BRCA genes are responsible for approximately 20-40% of inherited breast cancer. BRCA genes are large and as almost 2000 mutations are reported in both BRCA 1&2 and there are no hotspots regions, the entire gene needs to be screened by sequencing for mutations. Various methods have been adapted to detect these mutations of which Sanger Sequencing method is the most comprehensive and gold standard but has its limitations. Next gene sequencing is the new technique quickly being adopted by the diagnostic community and has its advantages and limitations. **Aims and Objectives:** In the present study we have used next-generation sequencing (NGS) technique to determine the prevalence of germ line mutations in BRCA1 and BRCA2 gene in breast cancer patients. **Materials and methods:** We report our preliminary experience of 9 cases studied by Sanger’s method (2) or Next gene sequencing techniques (7). **Results:** 2 of 7 cases for which we have received, the reports have shown likely pathogenic mutations. The First case had a likely pathogenic mutation C 5074+1g>A in BRCA1 gene, confirmed by Sangers.9380G>A, nonsense mutation has been detected in the 2 case in BRCA2 gene which is a stop codon mutation resulting in pathogenic change. Other 5 cases have shown no reported pathogenic mutations. **Conclusion:** This is just a preliminary study and many more cases need to be studied. Both challenges and benefits of testing BRCA genes by NGS will be discussed.

P39

Association of MTHFR C677T and A1298C Polymorphisms with Male Infertility in South Indian Population.

Suganya J, Smita B. Kujur, Kamala Selvaraj, Muthaiah SS, Geetha Haripriya, Chandra R.S.

1Department of Genetics, Dr. ALM PGIBMS, University of Madras, Taramani, Chennai-600113, TamilNadu, India. 2G.G. Hospital, 6-6, Thirumoorthy Nagar, Nungambakkam High Road, Nungambakkam, Chennai-600034, TamilNadu, India. 3Kamani Fertility Centre, 43, South Usman Road, T Nagar, Chennai-600017, TamilNadu, India. 4Prashanth Fertility Research Centre, No.77, Harrington Road, Chetpet, Chennai - 600 031, TamilNadu, India.

Background: Infertility is a worldwide reproductive health problem that affects 10-15% of married couples, and approximately half of these cases are due to the male factor. Several etiologies have been identified including chromosomal abnormalities, Y-chromosome microdeletions, CFTR mutations, endocrinopathies, immunological factors, environmental exposures and other genetic abnormalities. Methylene tetrahydrofolate reductase (MTHFR) is one of the main regulatory enzymes of folate metabolism, DNA synthesis and remethylation reactions. MTHFR C677T variant decreases enzyme activity and increases the homocysteine level which is considered as a risk factor for male infertility. Similarly the MTHFR A1298C variant also reduces enzyme activity but to a lesser extent. **Aims and Objective:** It was proposed to examine the possible association of these two polymorphisms in MTHFR gene with male infertility. **Materials and Methods:** A total of 208 infertile men exhibiting a normal karyotype without any classical AZF deletions and 100 men with proven fertility were investigated. MTHFR C677T and A1298C polymorphisms were analysed by PCR-RFLP method using Hinfl and Mbolll enzymes respectively. Two-sided Fisher’s exact test and Pearson chi-square test were used to determine significance between groups. **Results:** The genotype frequencies of MTHFR C677T were CC = 0.79, CT = 0.20 and TT = 0.01 in infertile men and CC = 0.74; CT = 0.26 and TT = 0.00 in controls. No significant difference was observed in the distribution of mutant 677T allele between infertile cases and controls (0.11 vs. 0.13) (OR = 0.74; 95% CI = 0.43-1.29; P = 0.31). Similarly in case of A1298C polymorphism, the frequency distribution of AA and AC and CC genotypes and C allele between cases and controls were 0.29, 0.49, 0.22, 0.46, and 0.32, 0.45, 0.23, 0.45 respectively (OR = 1.07; 95% CI = 0.95-1.16; P = 0.79). **Conclusion:** Both MTHFR C677T and A1298C polymorphisms were not significantly associated with increased risk for male infertility.

P40

Association of rs363039 and rs3630350 SNPs in SNAP25 Gene with Intellectual Disability

Aswini Sivasankaran, Anuradha D, Chandra R. Samuel

1Department of Genetics, Dr. ALM PGIBMS, University of Madras, Taramani, Chennai - 600113, Tamil Nadu, India. 2Department of Medical Genetics, Institute of Obstetrics and Gynecology, Madras.
Background: Intellectual disability (ID) is characterized by significant sub-average intellectual functioning co-existing with deficits in adaptive behaviour. It occurs in 1-3% of general population and the etiology remains elusive in about 40-50% of the cases. Genetic polymorphisms associated with variation in normal intellectual ability have been suggested to be involved in some cases of ID. The SNAP25 gene lies in a linkage area implicated previously in human intelligence. This synaptosomal-associated protein is involved in regulating neurotransmitter release and has been associated with memory and learning. Alleles previously reported to be associated with ID were T for rs363039 and A for rs363050. Aim and Objective: It was proposed to compare the distribution of the SNPs rs363039 and rs363050 in SNAP25 gene in 146 ID cases and in 101 sex-matched healthy control subjects. Material and Methods: Genotyping using self-designed primers was performed for the SNP rs363039 by PCR amplification followed by sequencing and for rs363050 by PCR-RFLP using Sau3AI enzyme. Deviation from Hardy-Weinberg equilibrium for the SNPs was tested and a possible association of the minor alleles with ID was determined by both the recessive and dominant genetic models. Results: Genotypic analysis revealed that only the SNP rs363050 was in Hardy-Weinberg equilibrium in both cohorts. The dominant model indicated a significant "protective" association (OR = 0.45; P = 0.007) in which GG+AG individuals had lower odds of developing ID than AA individuals, while no significant association was observed for the recessive model (OR = 0.9; P = 0.73). For the other SNP rs363039, the dominant model indicated a significant "protective" association (OR = 0.55; P = 0.03). The recessive model (TT+CT) showed a significant association with ID (OR = 2.35; P = 0.03). Conclusion: Extended research incorporating a larger sample size is required to confirm the association of the minor alleles for rs363039 and A for rs363050.

P42 Preliminary Screening for Yq Microdeletions, Polymorphisms and Chromosomal Abnormalities in Indian Infertile Men

Smita B. Kujur1, Suganya J1, Geetha Haripriya2, Chandra R.S1

1Department of Genetics, Dr. ALM PGIBMS, University of Madras, Taramani, Chennai 600113, TamilNadu, India. 2Prashanth Fertility Research Centre, No.77, Harrington Road, Chetpet, Chennai - 600 031, TamilNadu, India.

Background: About 20% of the couples fail to achieve pregnancy after one year of unprotected intercourse. A male sole or co-factor is found in approximately 50% of these cases. An abnormal karyotype, a gene mutation/polyorphism, medical conditions, lifestyle factors, mental stress and environmental causes are usually responsible. It is imperative to rule out the common risk factors before commencement of any form of assisted reproductive technology. Aim and Objective: It was proposed to carry out a preliminary cytogenetic and molecular genetic investigation on Indian infertile men attending a fertility centre in the city. Materials and Methods: Chromosomal analysis was performed on GGT-banded metaphases from PHA-stimulated leukocytes. Multiplex PCR was carried out using two STS primer sets for each of the classical AZFa, AZFb and AZFc.
Multiple myeloma (MM) is a clonal B-cell γγHbH disease as the severest form of Indian Journal of Human Genetics | Supplement 1 | 2014 | Volume 20 S61 direct harvesting of bone marrow aspirates. Used. Slides were prepared from cell pellets obtained from D13S319/13q34 in combination with CEP9 (Vysis) were LSI IGH/CCND1 XT, LSI IGH/MAF, LSI TP53/CEP17, LSI commercially available probes IGH@, LSI IGH/FGFR3, for the presence of non-random chromosome abnormalities pathologically, radiologically and clinical features were studied of 100 multiple myeloma patients diagnosed on the basis of MM and are contributory to tumor survival, proliferation, described to play important roles in the pathogenesis of progression to MM. Several genetic abnormalities have been Gammopathy of Unknown Significance (MGUS) and blood or urine and associated organ dysfunction. Monoclonal plasma cells in bone marrow, monoclonal protein in the neoplasia characterized by the accumulation of malignant and clinical presentation due to co inheritance of genetic abnormalities and their prognostic impact in our population. Cytogenetic Abnormalities in Patients with Multiple Myeloma Identified by Interphase FISH Perumal G1, Chandra RS2, Prabu P3, Indhumathi N4, Anil Tarigopula5, Rama Mani5 1Department of Centralized Molecular Diagnostic Laboratory, Apollo Hospitals, Chennai-600006, Tamil Nadu, India. 2Department of Genetics, Dr. ALMPGIBMS, University of Madras, Taramani, Chennai-600013, Tamil Nadu, India. 3Department of Hematology, 4Department of Medical Genetics, Apollo Hospitals, Chennai-600006, Tamil Nadu, India. Background: Multiple myeloma (MM) is a clonal B-cell neoplasia characterized by the accumulation of malignant plasma cells in bone marrow, monoclonal protein in the blood or urine and associated organ dysfunction. Monoclonal Gammapathy of Unknown Significance (MGUS) and Smoldering myeloma (SMM) are premalignant states that progress to MM. Several genetic abnormalities have been described to play important roles in the pathogenesis of MM and are contributory to tumor survival, proliferation, metabolism and drug resistance. Aim and Objective: It was proposed to screen for specific abnormalities of prognostic significance using interphase FISH in newly diagnosed multiple myeloma patients. Material and Methods: A total of 100 multiple myeloma patients diagnosed on the basis of pathological, radiological and clinical features were studied for the presence of non-random chromosome abnormalities using interphase fluorescence in situ hybridization (iFISH). Commercially available probes IGH@, LSI IGH/FGFR3, LSI IGH/CCND1 XT, LSI IGH/MAF, LSI TP53/CEP17, LSI D13S319/13q34 in combination with CEP9 (Vysis) were used. Slides were prepared from cell pellets obtained from direct harvesting of bone marrow aspirates. Results: The frequencies of chromosomal abnormalities among the patients tested were as follows: IGH rearrangements (26%), t(4;14)(p16.1q32) (14%), t(14;16)(q32;q23) (6%), t(11;14) (q13;q32) (3%), deletion 17p13.1 (7%), del(13q14.3)/monosomy 13 (25%) and hyperdiploidy as detected using CEP 9 probe (56%). It was observed that 49 of the 69 patients exhibited two or more abnormalities at the time of diagnosis. Evaluation of the clinical implications of these chromosomal abnormalities in terms of time to progression and overall survival is under progress. Conclusion: The frequencies of the different cytogenetic abnormalities screened in our subset of the Indian population are similar to those reported in other countries. A larger number of patients have to be examined using more probes to generate data on the types of genetic abnormalities and their prognostic impact in our population. A Rare Interaction of Homozygous β-thalassemia with HbH disease. Pallavi R. Mehta, Priya Hariharan, Manju S. Gorivale, Pratibha M. Sawant, Anita H. Nadkarni, Kanjaksha Ghosh, Roshan B. Colah. National Institute of Immunohaematology (ICMR), K.E.M. Hospital campus, Parel, Mumbai 400012. Background: HbH disease as the severest form of α-thalassemia compatible with life. It usually presents as a chronic non transfusion dependent moderate anaemia, with far less clinical complications than β-thalassemia major. β-thalassemia major with associated HbH disease is very rare. Aims and Objective: To evaluate the haematological and clinical presentation due to co inheritance of homozygous β-thalassemia and HbH disease. Material and Methods: Investigations included CBC, HPLC and cellulose acetate electrophoresis for Hb analysis and heat stability test. The β-genotype was determined by direct sequencing, the α-genotype by multiplex PCR and the Xmn I [Gy -158 (C→T)] polymorphism was determined using PCR-RFLP. Results: A 25 years old female was referred to us with low haematological indices (Hb: 7.4 g/dl; MCV: 61.5 fL; MCH: 12.2 pg; MCHC: 26.7 %, high RDW: 27.8%). There was no enlargement of the liver and spleen and no growth retardation. She had no history of any blood transfusion but had complaints of weakness. On HPLC, the HbA2 level was 15.0% and Hbf 0.9%. The peripheral smear showed anisocytosis and poikilocytosis with microcytic and hypochromic RBCs. Reticulocytes count was found to be 1.5%. Heat stability test for unstable haemoglobins was negative and no fast moving or abnormal band was observed on alkaline haemoglobin electrophoresis. DNA sequencing of the β-globin gene showed a homozygous β+ mutation at 5’ UTR +20 (-C). The Xmn I [Gy -158 (C→T)] polymorphism was absent (-/-). Her α genotype showed the deletion of three α genes (-a3.7/-/SEAl). Conclusion: The co-inheritance of homozygosity for a β-thalassemia mutation along with HbH disease may have led to more balanced α/non α globin ratios leading to a milder form of the disease.
P45

Vitamin D Receptor Gene Polymorphisms in Gallbladder Cancer Patients of North Central India

Jyotsna Singh1, Mustafa Ahmed Barbhuiya2, Braj Raj Shrivastav2, Pramod Kumar Tiwari1

1Centre for Genomics, Jiwaji University, Gwalior, Madhya Pradesh, 2Cancer Hospital and Research Institute, Gwalior, Madhya Pradesh, 3Johns Hopkins University School of Medicine, Baltimore MD 21205, USA

Background: Gallbladder cancer is an aggressive malignancy and the most common biliary tract tumor in the World. It is much more common in the women of North and Central India. The etiology of the gall bladder cancer remains ambiguous. The VDR is a crucial mediator for the cellular effects of Vitamin D and additionally interacts with other cell signaling pathway and is involved in cell proliferation. **Aim and Objective:** The aim of the present study is to elucidate possible association of Apal, FokI and TaqI polymorphism of VDR in gallbladder cancer patients of North-Central India. **Material and Methods:** A total of 75 controls and 60 cases (GBC) were genotyped for the three different VDR polymorphisms, viz Apal, TaqI, & FokI and comparison in different groups were made between cases & control. For Apal Cases (n=55) Controls (n=72), For TaqI Cases (n= 55) Controls (n= 66), For FokI Cases (n= 60) Controls (n= 76). χ2 test was performed to test the stationary significance. **Results:** Different proportion of the three genotypes i.e. AA, Aa, and aa of VDR Apa I polymorphism, TT, Tt, and tt of VDR TaqI polymorphism, and FF, Ff, and ff of VDR FokI polymorphism were observed. In our case-control study, we found no significant association was found between the genotypes and allele frequencies in gallbladder cancer cases and control for VDR gene Apal (p=0.7893 for “aa” and p=0.7748 for “a”), TaqI (p=0.4398 for “tt” and p=0.3650 for “t”) and FokI (p=0.8570 for “ff” and p=0.8676 for “f”). **Conclusion:** From the above study we infer that VDR might not be involved significantly in GBC. It is also not reflected in the combined genotype and allele frequencies of Apal and TaqI polymorphisms, which are known to be in linkage disequilibrium.

P46

Expression Analysis of S100 Calcium Binding Protein A9 and ERBB2 in Gallbladder Cancer.

Shushruta Bhunia1, Preeti Sharma1, Jyotsna Singh1, Sanjiv Gupta2, Braj Raj Shrivastav3, and Pramod Kumar Tiwari4

1Centre for Genomics, Jiwaji University, Gwalior, Madhya Pradesh, 2Cancer Hospital and Research Institute, Gwalior, Madhya Pradesh, 3Department of Surgery, Gajra Raja Medical College, Gwalior, Madhya Pradesh

Background: Gallbladder cancer is an uncommon malignancy and a rare neoplasm with high incidence in North India. Cholecystectomy is the only way of treatment left. Lack of diagnostic biomarker(s) and being chemotherapy resistant in nature, make this disease fatal. Therefore for improving the survival rate of GBC patients, identification of biomarker is a necessity. S100A9 is known to modulate signal pathways to directly promote invasion, migration and metastasis, probably via activation of NF-kB, Akt or MAP kinases and ERBB2 has a role as tyrosine kinase. **Aims and Objectives:** The aim of this study is to analyze the expression of S100A9 and ERBB2 in order to understand their likely role in gallbladder carcinogenesis. **Material and Methods:** Approx 70 samples of cancers (GBC) and 34 of non tumor samples were recruited for IHC and 28 samples for methylation study. Immunohistochemistry was carried out on Tissue Microarray (TMA) in gallbladder cancer tissues and compared with that of non tumor tissues. Bisulfite modification, followed by MS PCR, was performed to identify the promoter methylation. χ2 analysis was performed to test the statistical significance. **Results:** IHC revealed underexpression (33/71 of cases; p=0.6) and hypermethylation (14/25 of cases; p=0.4) of S100A9 in GBC in contrast ERBB2 (49/74 of cases; p=0.1) was found overexpressed. **Conclusion:** Downregulation and upregulation of S100A9 and ERBB2 respectively were shown by immunohistochemistry and MS PCR which seem to be involved in the progression of GBC directly or indirectly. We propose that there two genes may be used as diagnostic and prognostic biomarkers for GBC in future therapeutics. However, these results require further validation by Real Time PCR in large number of samples size.

P47

Study on the Whole Genome Methylation Profiling in Gall Bladder Cancer and Gall stone Disease.

Preeti Sharma1, Mustafa Ahmed Barbhuiya1, Shushruta Bhunia1, Braj Raj Shrivastav2, P.K.Tiwari3,4

1Centre for Genomics, Jiwaji University, Gwalior (M.P.) 474011, India, 2School of Studies in Zoology, Jiwaji University, Gwalior (M.P.) 474011, India, 3Cancer Hospital & Research Institute, Gwalior (M.P.) 474011, India, 4Johns Hopkins University School of Medicine, Baltimore MD 21205, USA

Background: Gallbladder cancer is a serious fatal disease, ranking sixth amongst gastrointestional cancers with gall stone as major risk factor. Therefore, we intended to study the relation of gallbladder cancer with gallstone in terms of differential methylation pattern and changes in the expression pattern of the corresponding gene. **Aim and Objective:** To investigate the role of differential methylation regions (DMRs) in the whole genome of gallbladder cancer and gall stone disease. **Material & Methods:** Whole genome methylation profiling was performed on 24 samples using IlluminaInfinium HD450K assay. Data normalization and analysis was done through Genome studio software version 1.8. **Results:** Analysis of the whole genome methylation data was performed on three data sets, i.e. Chol (Cholelithiases) vs ANT (Adjacent non tumor), Tumor vs ANT and Tumor vs Chol to reach any significant relation. To reduce any biasness, the most possible sources of variation, viz. sex chromosomes, SNP probes and DMRs with p>0.05 were excluded. After filtering we obtained a total of 33,343 CpG sites (DMRs). A subsequent change in the proportion of sites was observed for the three data sets, as 1818/33443 (5%), 6968/33443 (21%) and 24657/33443 (74%) for CHOL vs ANT, TUMOR vs ANT and TUMOR vs CHOL respectively. Also, we found that most of the DMRs were present on CpG
islands (50%), and at the 1st exon and proximal promoters. The functional annotation and pathway ontology revealed that most of the genes fall under the signaling pathways with DNA binding and transcription factor activity. **Conclusion:** The analyzed data, revealed a differential methylation pattern in our sample groups. We infer that methylation is likely to play a role in the pathogenesis of gallbladder cancer and that cholelithiasis is a potential risk factor in the molecular pathogenesis of GBC.

P48

ADH1 and ALDH2 gene polymorphisms among the Koraga population of South Karnataka, India.

K Vinutha Lakshmi*, R Rajkumar*, M Naveen*, K Thangaraj*, M S Mustak*

*Department of Applied Zoology, Mangalore University, Mangalagangothri-574199, °Centre for cellular and Molecular Biology, Hyderabad, India

Koragas are aboriginal tribe of Dakshina Kannada, Udupi districts of south Karnataka. Recent census studies show that the size of this population is decreasing annually due to many factors and among which high addiction to alcohol might be the leading contribution factor. The metabolism of alcohol is significantly influenced by the human behaviour of alcohol consumption and their adaptation. Alcoholism leads to alcohol-induced organ damage. To understand pattern of resistance/susceptibility of these population to alcoholism, we have undertaken gene targeted SNP study. Four functional polymorphisms included in this study are at genes class I alcohol dehydrogenase (ADH1) and aldehyde dehydrogenase2 (ALDH2) that plays a role in metabolism of ethanol to acetaldehyde and acetaldehyde to acetate respectively. Two SNPs are present in ADH1B gene (Exon3-Arg47His and Exon9-Arg369Cys), one SNP at ADH1C gene (Exon8-Val349Ile) and one SNP in ALDH2 gene (Exon 12-Glu487Lys). Our result showed that these SNPs are associated with alcoholism with significant P-value in Koraga population of Dakshina Kannada and Udupi district.

P49

Identification of Hepatocyte nuclear factor-1beta (HNF1B) gene deletions in Indian diabetic patients with renal abnormalities

Sekar Kanthimathi, Viswanathan Mohan, Venkatesan Radha

Madras Diabetes Research Foundation and Dr. Mohan's Diabetes Specialities Centre, WHO Collaborating Centre for Non Communicable Diseases Prevention & Control, IDF Centre of Education, #20, Golden Jubilee Biotech Park for Women Society SIPCOT, Siruseri, Chennai -603 103, India

Background: Heterozygous mutations in the transcription factor HNF1B have been reported to be responsible for maturity-onset diabetes of the young (HNF1B-MODY or MODY5) associated with various renal abnormalities. Whole HNF1B gene deletions accounts for 50% of HNF1B-MODY. **Aim:** To investigate the prevalence of whole or partial HNF1B gene deletion mutations in young Indian diabetic patients with various renal abnormalities, selected from Dr. Mohan's Diabetes Specialities Centre, Chennai. **Material and Methods:** Fifty unrelated young diabetic patients with renal abnormalities were screened for whole or partial gene deletion using Multiplex ligation probe amplification assay (MLPA) MODY P241-B1 kit (MRC-Holland, Amsterdam, The Netherlands). Fragment analysis was carried out using standard methods on the ABI 3500 analyser. Results were analysed using Genemarker software. **Results:** The fragment analysis revealed heterozygous whole gene deletion of exons 1-9 (Met1_Trp557del) in two unrelated patients. One of the patients had mildly contracted kidneys with multiple cysts and congenital short pancreas. The other patient showed evidence of absence of right kidney with mildly enlarged left kidney. Both the patients had no history of renal abnormalities or diabetes among any of the family members. The deletion mutation was found to be de novo in origin in one of the patients whose family was tested for the inheritance. Therefore, patients with diabetes and renal cysts in the absence of any family history should also be considered for genetic testing for HNF1B-MODY. **Conclusions:** This is the first major study of HNF1B-MODY from India and shows that about 4% of young diabetic subjects with renal abnormalities seen at a tertiary diabetes centre harbour whole gene deletion mutation.

P50

Do δ-Globin Gene Variants Contribute in Substantial Reduction in HbA2 Levels?

National Institute of Immunohaematology (ICMR), K.E.M. Hospital Campus, Parel, Mumbai-400012, India

Background: Mutations in the δ-globin gene are not pathogenically relevant, but co-inheritance of δ- globin variants along with β-globin gene defects can complicate the diagnosis of β-thalassemia trait. Hence identification of δ-globin variants is critical for identifying couples at risk of β-thalassemia particularly when one partner is a classical carrier. **Aim and Objective:** To determine the effect of δ globin gene variations on outcome of HbA2 levels. **Materials and methods:** Haematological analysis was carried out on a Sysmex K-500 analyser. The HbA2 and HbF levels were measured by HPLC. β and δ globin gene analysis was carried out by CRDB and by direct DNA sequencing respectively. **Results:** Here we report a family who had a child clinically presenting like β-thalassemia major. On investigation, the father had a classical β thalassemia trait picture having HbA2 level of 4.4% and was a carrier of IVS 1-5 G→C mutation. Interestingly the mother showed substantially reduced HbA2 level (1%) with an additional elution peak after the normal HbA2 peak on HPLC. Molecular analysis of the β globin gene showed that she was a carrier of the β thalassemia mutation IVS 1-5 G→C. The δ- globin gene analysis showed the presence of HbA2 St. George (CD 81 C→T) mutation. She showed absence of α thalassemia. Another case referred for haemoglobin electrophoresis showed near absence of HbA2 (0.2%). Molecular analysis showed one gene deletion in α globin gene (−a3.7/αα) and β globin gene was found to be normal, but the delta globin gene analysis showed presence of HbA2 Saurashtra (CD 100 C→T). **Conclusion:** These results show that few δ chain variants can remarkably reduce the HbA2 levels creating a problem in carrier detection of β-Thalassemia.
P51
Altered DNA Methylation in Young Coronary Artery Disease Patients Identified Using Whole Genome Methylation Profiling
Subhoshree Ghose1, Sourav Ghosh12, Vinay Singh Tanwar1, Sanjana Pillay1, Shantanu Sengupta12
1Genomics and Molecular Medicine unit, CSIR-Institute of Genomics and Integrative Biology, SukhdevVihar, Mathura Road, New Delhi 110 020, India. 2Academy of Scientific & Innovative Research, New Delhi, India

Background: Coronary artery disease (CAD), is a complex metabolic disorder characterized by development of plaques in the coronary arteries in the heart According to WHO, mortality due CAD in India was 2.03 million in 2010 and is expected to be 2.6 million by 2020. We had earlier reported that genomic DNA methylation is significantly higher in CAD patients as compared to healthy individuals. In this study we attempted to identify the regions that were differentially methylated in young CAD patients. Aims and Objectives: To identify differentially methylated regions in Coronary Artery Disease patients.

Materials & Methods: A total of 17 angiographically proven CAD and 16 controls were selected for this study. Genomic DNA from these individuals was enriched for methylated DNA using 5-methylcytidine antibody. The methylation enriched DNA was sequenced for 50 cycles on an Illumina HiSeq (2500) analyzer to sequence methylated regions. Sequenced raw reads were then mapped back to the human genome reference sequence (hg19) using Bowtie2 aligner, and then diffReps software was used for finding potential differentially methylated regions (DMRs) between cases and controls. Results: A total of 2220 DMRs were identified in these CAD patients. Of these, 75 were in the promoter region, 312 in the gene body, 749 in pericentromeric region, 39 in subtelomeric region and 1044 in other regions including repeats. A total of 148 were differentially methylated in CAD patients of which 91 were up regulated and 57 down regulated. Genes involved in one carbon metabolism pathway, MAP kinase pathway etc. were found to harbour the DMRs. Conclusion: This is the first whole genome methylation map for CAD cases. Our data has lead to the identification of a few novel regions that could be associated with CAD in Indian population. Validation of the data is currently underway.

P52
DNA Copy Number Changes in Myelodysplastic Syndromes
Department of Cytogenetics, National Institute of Immunohaematology (ICMR), 13th floor, new multistoryed building, K.E.M. Hospital Campus, Parel, Mumbai 400012, India.

Background: Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal haematopoietic stem cell disorders. The International Prognostic Scoring System (IPSS) introduces cytogenetic abnormalities together with cytopenia and percentage of marrow blasts as independent prognostic factors for both survival and progression to AML. Chromosomal abnormalities have been reported at a frequency of 20-50% in MDS cases at presentation with common abnormalities such as t(5/del(5q), t(7/del(7q)), t(8, +9), +11, del(11q), del(12p), del(17p), +18, +19, del(20q), +21). We designed a dedicated multiplex PCR assay (quantitative multiplex PCR of short fluorescent fragments or QMPSF) to measure the copy number of genes located at several loci susceptible to gains and losses in MDS. Aims and Objectives: Detection of DNA copy number changes in MDS subgroups using QMPSF assay.

Material and Methods: A total of 60 primary MDS patients were included in our study. We designed two distinct QMPSF assays which target 20 genes at several loci implicated in pathogenesis of MDS. QMPSF is based on simultaneous amplification of multiple target sequences using dye labeled primers under semi-quantitative conditions that allow rapid and reliable comparison of the fluorescence of each amplicon in test samples and in controls. Allele dosage was calculated using: visual sample-to-control comparison and numerical sample-to-control comparison. Results: A total of 20 (33.3%) patients showed deletions majorly involving 7q loci gene EPO (15%) and 7p loci gene SEC61 (10%) whereas 20 (33.3%) patients showed duplication in EPO, SEC61, EGR1, CD69 and CDKN1B genes by QMPSF previously undetected by CC or FISH.

Conclusions: These results demonstrate that QMPSF assay targeting 20 genomic regions located on the six chromosomes most frequently involved in MDS can be helpful for the detection of chromosomal abnormalities in MDS patients for whom cytogenetic data are not available. This method cannot replace CC. However, a prospective evaluation should confirm the clinical impact of this non-invasive and inexpensive approach.
was calculated by the random-effects method. For odds ratio, confidence interval was calculated. The significance level was 5%.

Results: The results revealed that the chi-square test for homogeneity for ACE and CYP1A1 systems was found to be non-significant in patients with respect to controls. The inter group heterogeneity for ACE system was found to be a significant (ACE: $\chi^2 = 5.5786$; d.f. = 2; 0.05>p>0.10), indicating a significant association between colon cancer and ACE marker. Whereas, the inter group heterogeneity for CY1A1, system was found to be non-significant. Risk estimates show a significant association of ACE – ID phenotype (RR = 1.90) with an overall odds ratio of 3.45 and an increased risk of 50% and more, indicating that individuals with ACE-ID phenotype were more likely to get the disease when compared with the other phenotypes. Likewise, Risk estimates show significant association of homozygote (m2m2) and heterozygote (m1m2) phenotypes with colon cancer individuals (RR = 1.75 and 1.27), with an increased risk of 50% and more, indicating that individuals with these phenotypes were more likely to get the disease when compared with the other phenotype of the CYP1A1 polymorphism. Conclusion: Thus, our study concludes that there is no association found between the Alu-ACE and CYP1A1 markers with colon cancer. However, in Alu-ACE and CYP1A1 markers, the odds ratio and relative risk estimates of DD and m2m2 phenotypes showed an increased risk to have the disease when compared with the other phenotypes.

P54

PON1 gene polymorphisms and its activity in Indian women with PCOS

Roshan Dadachanji*, Nalini Shah*, Anushree Patil*, Sushma Khavale*, and Srabani Mukherjee*

*National Institute for Research in Reproductive Health, J.M. Street, Parel, Mumbai-400012, -Department of Endocrinology, Seth GS Medical College, Parel, Mumbai

Background: Polycystic ovary syndrome (PCOS) is a complex multigenic endocrinopathy with long term health implications like Type 2 diabetes mellitus and cardiovascular disease. It is the most common cause of anovulatory infertility and its cardinal features include hyperandrogenemia, menstrual dysfunction and insulin resistance. This multifaceted syndrome is influenced by genetic and environmental factors. Paraoxonase is a calcium dependent antioxidant enzyme which exerts a major cardioprotective effect via its ability to inhibit LDL oxidation and promote macrophage cholesterol efflux. The serum PON1 activity is partially determined by genetic variations in coding and non-coding region of PON1. **Aims and Objectives:** The present study aims to delineate the association of PON1 genomic variants with enzyme activity and cardiovascular disease risk factors in women with PCOS. **Materials and Methods:** Two coding region polymorphisms, L55M and Q192R, have been evaluated by PCR amplification of genomic DNA followed RFLP in both PCOS and age matched healthy control women. Clinical, anthropometric and biochemical parameters related to metabolic and hyperandrogenemic traits have been also estimated. We have measured the arylesterase and paraoxonase activity of PON1 towards phenylacetate and paraoxon respectively. **Results:** L55M polymorphism showed significant association with PCOS risk; however there were no difference between distribution of genotype and allelic frequency between controls and PCOS for the Q192R polymorphism. PON1 arylesterase activity is reduced in PCOS women compared to controls while paraoxonase activity is comparable between the two groups. **Conclusion:** Our study supports the role of PON1 as an important predisposing factor in PCOS development and will be helpful to unravel PCOS pathophysiology.

P55

In silico DNA Protein interaction study on Wild and Mutant sequence of PAX9

Prashant Ranjan, Tanmoy Sarkar and Parimal Das*

Centre for Genetic Disorders, Faculty of Science, Banaras Hindu University, Varanasi-221005, UP, India

*Corresponding Author: parimal@bhu.ac.in

Background: PAX9 is a transcriptional regulator of PAX family which has highly conserved DNA-binding region, the paired domain. PAX9 plays an important role during tooth development and its mutation leads to tooth agenesis. Attempt has been made to study the DNA protein interaction of a missense mutation ser43lys (S43K) and Phe15Ile (F15I) in paired domain of PAX9, recently reported in a study conducted in Chinese family and European descent segregating autosomal dominant nonsyndromic tooth agenesis. **Aim:** In Silico Prediction and Identification for cause of destabilized interaction/s between target 3D-DNA and mutant PAX9 protein. **Objectives:** (1) In Silico homology modeling of 3D structure of wild and mutant PAX9 protein with target DNA (2) Assessment of physiochemical properties in wild type and mutant protein while interacting with target. **Material and Methods:** 3D structure of wild and mutant PAX9 was modeled using Mod web and energy minimization was done by YASARA server. Physiochemical properties were calculated through Protparam tool. 3D DNA structure was modeled with the EMSA (Electrophoretic Mobility Shift Assay) e5 probe “CACCGCAGATTAGCACCCTTCC GCTCAGGCTGTCC”. Modeling of DNA was performed by 3D-DART. The optimized model for protein and DNA were docked to illustrate the interaction between wild and mutant protein with DNA using HADDOCK Easy interface. **Results:** Study of Physiochemical properties on wild and mutant PAX9 protein are encouraging and revealed that the molecular weight, isoelectric point, positive residue, negative residue, instability index and, GRAVY value get diverse in wild and mutant PAX9. The DNA protein interaction study showed that the mutant PAX9 (S43K and F15I) protein cause decrease in affinity for DNA than wild type protein however mutant PAX9 (S43K) has more DNA binding affinity than mutant PAX9 (F15I). **Conclusions:** In silico studies are proven significant to delineate the molecular mechanism underlying mammalian tooth agenesis and being experimentally validated. **Keywords:** PAX9, Physiochemical properties, DNA-Protein interaction, HADDOCK Easy interface.
P56

Cytogenetics in Bad Obstetric History and Genetic counseling.

Chandel D.1, Chawla S.1, Kedar R.1, Patel T.1, Munshi S.2, Rao M. V.1

1Division of Human Genetics, Department of Zoology, BMT and Human Genetics, Gujarat University, Ahmedabad. 2Munshi Hospital, Ellisbridge, Ahmedabad. E-mail: divya_chandel@yahoo.com

Background: About 15% to 20% of pregnancies end in spontaneous abortion, mostly in the first trimester. At least 50% of clinical abortions result from chromosomal abnormalities. Chromosomal translocation in either parent is the most common structural rearrangement involved in spontaneous abortions. Aims and Objectives: The aim was to identify chromosome abnormality as an etiological factor in couples with bad obstetric history (BOH). Material and Methods: Our study included couples with BOH referred to the Departmental Clinic for Karyotyping and genetic counseling. A detailed proforma was filled for each case with detailed pedigree, family history etc. Peripheral blood lymphocyte cultures and G banding was done as per the routine protocol. Result: Case I: The karyotype of the husband was normal (46,XY) and the wife had a reciprocal translocation involving chromosome 2 and 10, with karyotype 46,XX,t(2;10)(q31;q25). Case II: The karyotype of the wife was normal (46,XX) and the husband showed a reciprocal translocation with karyotype 46,XY,t(5;9) (q13;q32). Conclusion: The cases highlight the importance of cytogenetic analysis in all couples with BOH. The identification of a balanced chromosomal rearrangement in a parent is useful because it provides not only an explanation for the miscarriages, but also information about the future pregnancies. Genetic counseling should be provided to such couples, which includes an explanation of the findings, risk for miscarriages and live birth with congenital anomalies and a discussion of reproductive options, including prenatal diagnosis. Hence, in cases of BOH, cytogenetic examination of both partners should be routinely done which will facilitate genetic counseling and management accordingly.

P57

Inherited and Acquired Thrombophilia in Women with Recurrent Pregnancy Loss

Rucha Patil, Kanjaksha Ghosh, Sonal Vora, Shrimati Shetty

National Institute of Immunohaematology, 13th floor, New Multistoreyed Bldg, KEM Hospital Campus, Parel, Mumbai 400012.

Background: 15% of reproducing couples suffer from pregnancy loss (PL) and recur in 2-3%. The most frequently hypothesized cause of unexplained PL refers to a defective maternal haemostatic response leading to uteroplacental thrombosis. Aims and objectives: The present study aims to investigate the prevalence of different genetic and acquired thrombophilia markers in a large series of Indian women with RPL. Material and Methods: The study comprised of 578 women with no apparent etiological causes of RPL and 115 healthy women with at least one live child and no history of PL or thrombotic episode. Genetic thrombophilia- PC, PS, antithrombin (ATIII), Factor V Leiden mutation (FVL) were done in 578 patients and EPCR 23bp insertion, MTHFR polymorphism, PAI-1 4G/5G polymorphism in 488 patients. Acquired thrombophilia- LA and ACLA were done in 550 patients; A[12]GP1 and AAnnVA could be analyzed only in 532 patients. p values were calculated with two tailed Fisher’s exact test, and statistical significance was assumed at p < 0.01, 99% confidence interval. Results: Among genetic thrombophilia, the risk of PL was highest with PS deficiency (16%, 99% CI, p=0.006) followed by PAI-1 4G/4G (19%) polymorphisms, PC deficiency (6%). Among antiphospholipid antibodies, the risk of PL was the highest in women with ACLA i.e. 24% and 2.6% in patients and controls, respectively. This was followed by AAnnVA - 18% against 1.7%, A[12]GP1- 11% against 1.7% and LA- 8% against 0.86% in patients and controls, respectively (99% CI, p<0.01). Conclusion: All Hematologists and Gynecologists should support thrombophilia screening as thrombophilia, both genetic and acquired, is an important contributing factor in RPL and women with unexplained PL should be screened in a cost effective method in the order of their prevalence.

P58

Biomonitoring and Genetic risk assessment in Petrol Pump attendants

Shaikh Amrin, Ansari Nishat, Rao M. V and Chandel Divya

Department of Zoology, BMT and Human Genetics, School of Sciences, Gujarat University, Ahmedabad. India. divya_chandel@yahoo.com, a.shaikh201@gmail.com

Background: Biomonitoring of exposure in workplaces has gained importance in evaluation of human health hazards. Petroleum fumes contains major organic products (Phenolic compounds, polycyclic aromatic hydrocarbons, benzene, toluene etc), which on chronic exposure can result in many disorders such as inflammation, lung function, asthma and oxidative stress, and exposure to gasoline vapors is classified by the International Agency for Research of Cancer as possibly carcinogenic to humans. Petrol station attendants are chronically exposed to petroleum derivatives through inhalation of petrol during vehicle refueling. Aim and Objectives: The aim and objective of present study is to determine the genotoxicity risk amongst Petrol pump attendants exposed to gasoline fumes and its in vitro amelioration. Materials and Methods: Urine sample analysis was done to evaluate the Phenol concentrations. Free radical toxicity parameters such as Superoxide Dismutase (SOD), Catalase (CAT), Glutathione (GSH) and Glutathione peroxidase (GPx) were measured to check the effect of gasoline exposure. While probable genetic damage was determined by Sister Chromatid Exchanges (SCEs) in peripheral blood lymphocytes of study subjects. Further in-vitro amelioration was also studied using antioxidants such as Vitamin C and Vitamin E. Results: Urinary phenol levels were increased significantly in sample populations as compared to controls; ROS parameters were also found to be significant amongst exposed individuals. Moreover, SCE frequencies were also found significantly increased due to exposure of gasoline fumes which showed amelioration by addition of antioxidants (Vitamin
C and E) to the exposed blood cultures. **Conclusion:** The data showed a direct co-relation between increased urinary phenol levels and ROS parameters due to occupational exposure. Moreover, it also displayed a potential to cause genetic changes in the exposed subjects. Vitamin C and E revealed protective effect against genotoxicity caused due to prolonged exposure. The data highlights the need to maintain safety measures and intervention to minimize exposure.

Keywords: Genotoxicity, Urinary Phenol, ROS, Vitamin C, Vitamin E.

P59 Mitigating effects of curcumin and vitamin C against cadmium induced toxicity

Ambar A. Pathan¹, Ankit B. Nariya¹, Naumita S. Shah¹, Shiva S. Chettiar², Mandava V. Rao² and Devendrasinh D. Jhala*²

*Correspondence: ddjhala@yahoo.com.

Background: Cadmium (Cd) is a toxic, ubiquitous heavy metal of continuing occupational and environmental concern with a wide variety of adverse effects. It persists in the environment as highly toxic metal to humans. It has an extremely long biological half-life that essentially makes it a cumulative toxin. It has been listed as number 7 in its top 20 list of hazardous substances by the International Agency for Research on Cancer. Cadmium exposure mainly occurs in industrial settings, cigarette smokes and cadmium contaminated water, air and food are other non-occupational source of human exposure to Cadmium. In contrast to the activity of Cadmium, Curcumin the yellow coloured polyphenolic super antioxidant derived from powdered rhizome of Curcuma longa is useful in various debilitating conditions. It is also recommended in cancer prevention and as a treatment adjunct in various diseases. While Vitamin C is a water-soluble dietary antioxidant that plays an important role in controlling the oxidative stress. It can also protect against damage induced by reactive oxygen species. **Aim and Objectives:** The aim of present study was to evaluate the genotoxic and cytotoxicity effects of Cadmium on the Peripheral Blood Lymphocyte Culture (PBLC) and to study the mitigating role of Curcumin and Vitamin C as potent antioxidants against cadmium induce toxicity. **Materials and Methods:** Genotoxicity parameters such as Sister Chromatid Exchanges, Cell Cycle Proliferative Index, Average Generation Time and Population Doubling Time is being studied by PBLC while, free radicals toxicity parameter such as Lipid Peroxidation, Gluthathione as well as enzyme require to overcome oxidative stress i.e. Gluthathione peroxidase, Gluthathione reductase, Gluthathione-S-transferase, Superoxide dismutase and Catalase were measured to check the effect of Cadmium induced oxidative stress influenced cell cycle and genetic aberrations. **Results and Conclusion:** The results reveals a significant toxicity in dose dependent manner in Cadmium added cultures while co-administration of Curcumin and Vitamin C along with Cadmium shows a significant protection against cytogenetic damage, indicating their combined protective role which was calculated by percentage of amelioration. The significance of these results will be discussed.

Keywords: Cadmium, Genotoxicity, Oxidative Stress, Vitamin C, Curcumin.

Acknowledgement: Authors are thankful to UGC for the grant received as MANF.

P60 Role Of Some Antioxidants On Cyclosporine Induced Cytogenetic Alterations In Human Blood Cultures

Ankita J. Shah and Mandava V. Rao

Human Genetics Division, Department of Zoology, Biomedical Technology and Human Genetics, School of Sciences, Gujarat University, Ahmedabad, India

E-mail: manvrao@gmail.com.

Background: Cyclosporine, an oligopeptide from the fungus Tolypocladium inflatum, consists of eleven amino acids. It is a potent immunosuppressant administered primarily during immunosuppressive therapy to prevent graft-versus-host reactions and to control diseases associated with immunological defence. Several studies indicate that cyclosporine target transporter family of proteins and exhibit affinity towards Ca2+ channel which results in blocking of T-cell activation. Immunosuppression is thought to be the result of impairment of T-cell function. Hence, this study was conducted to investigate Cyclosporine induced genotoxic effects on human lymphocytes. Further, in vitro amelioration was also assessed using mitigating antioxidants such as Curcumin and Melatonin as they are free radical scavengers possessing anti-oxidative and anti-inflammatory properties. **Aims and Objectives:** To demonstrate the ameliorative effects of curcumin and melatonin against cyclosporine induced genotoxicity in blood lymphocytes at various dose levels. **Materials and Methods:** Peripheral Blood Lymphocyte cultures (PBLC) were set up from blood samples of healthy donors (aged 18 to 25 years). The study was divided into ten groups consisting of untreated Control, Curcumin alone (3.8μM), Melatonin alone (0.2mM), Low dose (2.93 × 10-2 μM), Mid dose (5.86 × 10-2 μM) and High dose (0.12 μM) of cyclosporine in combination with and without Curcumin and Melatonin as well as positive control treated with Ethyl Methyl Sulphonate (EMS; 1.93mM). The genetic damage indicators studied were Cell Cycle Proliferative Index (CCPI), Sister Chromatid Exchanges (SCEs), SCEs/plate, SCEs/chromosome, Population Doubling Time (PDT) and Average Generation Time (AGT). Statistical analysis was done by student’s t-test. **Results:** A dose dependent reduction was seen in CCPI of treated cultures in comparison to the controls. An increased frequency of SCEs was significant due to exposure to cyclosporine. Curcumin and Melatonin supplementation to treated cultures were found to ameliorate the genotoxic effects induced by cyclosporine. A comparison of all groups with untreated control and pro-oxidant group with respective antioxidant groups was also evaluated. **Conclusions:** Curcumin and Melatonin led to a significant decrease in the genotoxic indices exerted by Cyclosporine exposure to blood cell cultures. The outcome of this study is useful in addressing the adverse effects of cyclosporine in various medical conditions and promotes the supplementation
of antioxidants in cyclosporine-based therapies.

Keywords: Genotoxicity, Cyclosporine, Antioxidants, PBLC, CCPI, SCE.

P61

Some cytogenetic aspects of infertility in western India

Anvari Nishat, Shaikh Amrin, Bhavsar Shruti, Rao M.V and Chandel Divya

Cell Biology and Cytogenetic Lab, Department of Zoology, Uni. of School of Sciences, Gujarat University, Ahmedabad-380009, Gujarat, India

Email: divya_chandel@yahoo.com, nishat1012@gmail.com

Background: The term infertility encompasses a wide variety of disorders. The identification of genetic factors causing infertility in humans remains noticeably deficient at present and hence the identification of genetic factors causing infertility has become important. **Aim and Objectives:** The aim of the present study was to analyse some etiological aspects of infertility in western Indian population. **Materials and methods:** The infertile males, infertile females and similar number of control individuals were recruited in the present study after taking their due consent. Controls were age matched fertile and chromosomally normal male and female individuals. The standard procedure of Hungerford (1965) was followed with slight modifications for metaphase chromosome preparations. G-banding was done by the method of Sun-Chu-Chang (1973) and karyotyping done. Hundred metaphases were analyzed in infertility patients and age matched control individuals for the various parameters. The statistical analysis was done by student’s t-test. **Results:** Karyotype study revealed that one of the male individual had a balanced translocation involving chromosomes 5 and 9 and all the other cases were showed normal karyotype. The hypoploidy rate, the hyperploidy rate and total aneuploidy rate was significantly increased in infertile males as compared to control males. In infertile females the rate of hypoploidy and total aneuploidy was non-significant, while hyperploidy was significantly increased when compared to the control females. The single chromatid telomeric association frequency, double chromatid telomeric association frequency and the total telomeric association frequency in infertile males and females was non-significant as compared to the respective control individuals. **Conclusions:** The data of our study supports the hypothesis that aneuploidy is common in infertile patients and even significant etiologic factor leading to fertility problems. Therefore this should be confirmed in a larger group of infertile cases.

Keywords: Infertility, aneuploidy, telomeric association.

P62

Genetic variants of ABCA1 and coronary artery disease

Ashley Stanley¹, Chandra Shekar K. Ponde², Rajesh M. Rajani², T. F. Ashavaid¹,³

¹Research Laboratories, ²Department of Cardiology, ³Department of Lab. Medicine, P. D. Hinduja Hospital and Medical Research Centre, Mahim, Mumbai.

E-mail: dr_tashavaid@hindujahospital.com/tashavaid@gmail.com

Background: Coronary heart disease is the leading cause of death worldwide, responsible for over 7 million deaths annually. Low HDL-C levels constitute an independent risk factor for Coronary artery disease. The ATP-binding cassette transporter A1 (ABCA1) is crucial in the initial step of HDL formation and in reverse cholesterol transport. **Aims and Objectives:** To test the SNP’s of the ABCA1 gene and to associate the variations with CAD. **Materials & Methods:** Sample Collection: 150 angiographically verified CAD patients with 150 angiographically negative, age and sex matched CAD controls, visiting the P. D. Hinduja Hospital and Medical Research Center’s catheterization laboratory were recruited for the study. Genotyping: DNA extraction was done by modified Miller et al method. 183 ABCA1 variants were genotyped with the Human Cardiometabo Beadchip using the Infinium II Assay. 8 variants not included in the microarray were genotyped by conventional allele specific PCR. **Results:** Of the variants genotyped by conventional PCR, frequency of the variants of I883M, V771M and V825I were observed to be higher in controls over cases, while T1427 variant was seen in more cases than controls. Among the variants genotyped by DNA microarray, 51 variants were seen in more cases in controls, while 36 variants were observed in controls over cases. The ABCA1 variant chr9:10669854 significantly correlated with the cases (p = 0.027). **Conclusion:** Preliminary results suggest that ABCA1 variant at position chr9:106698544 may be associated with CAD.

P63

Study of Chromosomal Aberrations and Molecular Mutations in Myelodysplastic Syndrome

Seema A. Korgaonkar, Chandrakala S, Kanjaksha Ghosh, Babu Rao Vundinti

National Institute of Immunohematology (ICMR), 13th Floor, NMS Building, KEMH, Parel Mumbai 12.

Background: Myelodysplastic syndrome (MDS) is a heterogeneous group of clonal hematopoietic stem cell disease. Chromosomal aberrations, frequency ranging from 20-50% have been reported in MDS. Various molecular mutations are associated with MDS. We have carried out a study to detect chromosomal abnormalities and molecular mutations in ASXL1, TET2 genes in MDS. **Aim and Objective:** To study the chromosomal aberration and molecular mutations in MDS patients and its correlation with prognosis. **Material and Method:** Cytogenetic study was carried out in 100 clinically diagnosed MDS patients. Cytogenetic study was done using GTG-banding and Fluorescence in situ hybridization (FISH). DNA was isolated and mutation analysis of TET2 and ASXL1 gene was carried out using specific primers and sequencing was done according to standard procedure. **Results:** The MDS subgroups in our study were RA (35%), RCMD (40%), RAEB-1 (20%), RAEB-2 (4%) and MDS-U (1%). The chromosomal aberrations were detected in 54% of MDS patients and the type of chromosomal aberrations were deletions 7q (17%), del 20q (18%) and trisomy 8 (16%). Molecular analysis of ASXL1 gene mutations including 3 novel mutations were detected
in 5 and 2 novel mutations were detected in TET2 gene. **Conclusions:** Confirmation of conventional cytogenetic is important in the diagnosis and prognosis of the disease. The molecular mutations such as TET2 and ASXL1 gene play an important role in understanding the progression of the disease.

P64
A Novel Phenotype in Complete Androgen Insensitivity Syndrome due to ΔPhe583 in Androgen Receptor Gene
Pooja Chauhan, Amit Kumar Rai
Centre for Genetic Disorders, Banaras Hindu University, Varanasi-221005

Accurate Androgen Receptor (AR) function is crucial for male sex development and maintenance of secondary male characteristics. Mutation in AR gene leads to androgen insensitivity syndrome. Individual bearing the complete form of Androgen Insensitivity (CAIS) present a female phenotype and lack of pubic and axillary hairs. Here, a case was presented with oligoamenorrhea with complete androgen insensitivity syndrome (CAIS). Mutational analysis by Sanger sequencing of complete AR gene revealed an in frame 3 nucleotide deletion at codon 583 (or 584) in DNA bonding domain (Exon 2). This deletion removes one of the phenylalanines that invariably occupy adjacent positions in the N-terminal α-helical region of DBD of AR receptor. Mutation lies in P-box region responsible for the base-specific contacts with the DNA major groove. Patient had most of the features of CAIS like-high level of FSH and LH, both ovaries absent, hypoplastic uterus and female like physical appearance but milder form of amenorrhoea i.e Oligoamenorrhea. This mutation may affect the binding of androgen receptor completely or partially to its downstream genes.

P65
Syndromic and Non-Syndromic Polydactyly
Rashmi Patel1, Visweswar Bhattacharya2, Subodh Kumar Singh3, Akhtar Ali1
1Centre for Genetic Disorders, Faculty of Science, Banaras Hindu University, Varanasi, 2Department of Plastic Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 3G. S. Memorial Plastic Surgery Hospital & Trauma Center, Varanasi.

The GLI3 protein is a zinc finger transcription factor, expressed early in development. GLI3 exhibit allelic heterogeneity as mutations in this gene are associated with several developmental syndromic and non-syndromic polydactyly. The present study reports a familial case of Greig Cephalopolysyndactyly Syndrome (GCPS), showing an autosomal dominant pattern of inheritance and a sporadic case with both postaxial polydactyly (PAP) type A and B. Resequencing of GLI3 gene reveals a previously reported nonsense truncation mutation g.42007251G>A (rs121917714, p.R792X) in GCPS family and a novel single nucleotide insertion g.42004239_42004240insA (p.E1478X) in the sporadic case of PAP. Both nonsense truncation mutations p.R792X (in GCPS) and p.E1478X (in PAP) introduce a premature stop codon within its N-terminal and C-terminal portions respectively. The N-terminal truncation causes the loss of both downstream trans-activation (TA) domain and CBP-binding module, whereas C-terminal truncation leading to the loss of one TA domain (TA1) of GLI3. C-terminal truncation of GLI3 results in the inability of the protein to activate transcription of the target genes which might be leading to postaxial polydactyly type A and B (PAP) in the patient.

P66
Essentiality Verses Affordability Of Genetic Tests: Two Ends Of Spectrum In India
Ashwini karkamkar
Genetic Counseling Centre, Saneguruji Arogya Kendra, Hadapsar, Pune, Maharashtra.

Introduction: Prenatal screening tests are essential tools in prevention of fetal anomalies or inherited disease. With the evolution of newer tests in genetic field like microarray and mutation analysis, diagnosis for many unknown genetic disorders is not beyond the reach now. However because of poor socioeconomic status, affordability of these diagnostic tests has important negative impact on its practical applications. This is especially true for developing country like India. In this situations of moral crisis, the usual decision taken by most of parents is that of Neutrality. Here we have tried to present some of these symbolic cases. **Methods:** For all the cases referred, detailed history was assessed. Depending upon the requirement of individual case the prenatal screening test was offered along with non-directive counseling. Case 1: 25yr old lady [G3, P1,L2,A0],with 6yr old healthy daughter and 3yr old son affected with Down’s syndrome. In presented with gestational age 19-20wk, USG showed hypoplastic nose and VSD in fetus. Advised amniocentesis and FISH during counseling but patient did not come for follow-up. Case 2: 19yr old primigravida came with the report of hydrops secondary to cystic hygroma. Advice of amniocentesis was given but patient directly came for follow-up during 28wk of gestation. At that time she was having USG reports from some centre out of Maharashtra, showing hyperechoic bowel, bones not corresponding to their parameters. Case 3: 28yr old lady [G5,P1,L2,A2] came at 8th wk of gestation. She has history of first son 9yr old with mental retardation and dysmorphic features. With the history of 2 spontaneous abortions and previous child having MR, advice of karyotyping of affected son was given. As they were not affording the cost, they went for routine screening test of NT scan at 12wk but it gave the diagnosis of missed abortion. **Result:** Almost for all cases, where invasive procedure was required, financial status of the patient, played important role for decision making. **Conclusion:** Affordability issue limits the use of genetic tests. Though advanced and newer tests are now available, use of the test is beyond reach of needy patients. Funds should be raised and tests made available at concessional rate at private and government hospital.
Cytogenetic Analysis For Chromosome Instability In Fanconi Anemia – SRL Experience.
Rupa C. Dalvi, Neeraja T. Koppaka and Swarna Mandava
SRL Limited, S. V. Road, Goregaon, Mumbai.

Background: Fanconi Anemia is an inherited, complex, heterogeneous disorder characterized by the presence of genomic instability. Chromosome breakage study which is based on exposure to low dose DNA-cross linking agents such as diepoxybutane (DEB) or Mitomycin C test is the gold standard method to diagnose Fanconi anemia cases. Aim/Objective: The aim of this study is to determine the frequency of chromosome breakage in cases suspected for Fanconi anemia which were referred to SRL. Material and Methods: A total of 646 cases with the history of aplastic anemia suspected for Fanconi anemia during the period 2010-2014 were referred from various hospitals from all over India. Chromosome breakage analysis was carried out as described previously using mitomycin C with varying concentrations. Age and sex matched normal whole blood was used as control for comparison. A total of 100 cells were scored from the test and control for the presence of chromosome breaks and radials. GTG banding was also performed simultaneously. Results: Among 646 cases studied, 466 were males while the remaining 180 cases were females. The male to female sex ratio was found to be 2.5:1. Out of 646 cases, 349 were below 15 yrs age group and 297 were above 15 years age group. Overall, chromosomal breakage analysis revealed that 52 out of 646 (8%) showed genomic instability and hence confirmed as fanconi anemia. Among the 349 cases which were below 15 yrs, 12.9% showed chromosomal breakage, in contrast, of the 297 cases above 15 years of age, only 2.5% harbored chromosomal breakage. Interestingly, nine cases showed chromosome abnormalities like inv (12), rob translocation and polymorphic variants. Conclusions: This study revealed 8% cases with chromosomal breakage, based on which they were confirmed as Fanconi anemia. The current study highlights the importance of chromosome breakage analysis for confirming the diagnosis of fanconi anemia.

Partial Trisomy of Chromosome 9 with Congenital Anomalies
Preeti Kumari, Dinesh Kumar Baitha, Royana Singh
Cytogenetics Unit, Department of Anatomy BHU, Varanasi, Uttar Pradesh, India

Background: A case of trisomy for the short arm of chromosome 9 in patient is described, with particular emphasis on multiple congenital anomalies including microstomia, micro-ophtalmia and an additional finger at pre-axial position, with chief complaint in breathing. The difficulty of providing comprehensive treatment in such case has been discussed.

Materials & Methods: We investigated a large five-generation pedigree of Indian origin with ten affected family members. The patient was analyzed by classical karyotyping and applied; Chromosomal microarray and Fluorescence in situ hybridization (FISH). Results: The karyotyping results from both parents was karyotyped and the mother was found to be a carrier of balanced reciprocal translocation, 46, XX; t(9;10)(p13;p15). Therefore, the child was trisomic for the region 9p13–pter and monosomic for the telomere region of 10th chromosome. Following this, the diagnosis was changed to trisomy of the short arm of chromosome 9. Conclusion: The development of differential banding techniques for human chromosomes has resulted in the reporting of large numbers of partial duplication syndromes. We conclude that chromosome number 9 is particularly susceptible to breakage and rearrangement.
Mental retardation (MR) is a common neurological disorder that affects 1-3% of population. It can be divided into syndromic and non-syndromic form. Syndromic MR is characterized by distinctive and consistent clinical findings in addition to mental retardation. Whereas in non-syndromic patients MR is the only primary symptom. On the observation of high ratio of affected males over females in MR it has been seen that there is a male predominance of high ratio of affected males over females in MR. ARX and MECP2 genes are most frequently mutated of chromosome 3 (3p deletion syndrome) varies from mild to severe intellectual deficit, micro- and trigonocephaly, and a distinct facial appearance.

P70

Association of Toll Like Receptor and CD14 Genes Polymorphisms With Neonatal Sepsis

Sneh L Martin, Ruchi Nanwati, Roshan B Colah, Kanjaksha Ghosh, Malay B Mukherjee

National Institute of Immunohaematology (ICMR), 13th Floor, NMS Building, KEM Hospital campus, Parel, Mumbai 400 012, India

Background: Despite significant advances in supportive care, neonatal sepsis is the commonest cause of mortality and morbidity. Recent studies suggest that sepsis is likely to be due to an interaction between genetic and environmental factors. Therefore identification of single nucleotide polymorphisms (SNPs) in the genes involved in sepsis may help to understand the pathophysiology of neonatal sepsis. Mutations of genes involved in the innate immune system have been reported to be associated with an increased sepsis rate. **Aims:** The present study was undertaken to investigate the genotypes and allele frequencies of the variants in the innate immune receptor genes (TLR2, TLR4, TLR5 and CD14) and their association with neonatal sepsis. **Material and methods:** Genotyping of eight SNPs (rs121917864, rs5743708, rs3804099 and rs38040100 in TLR2, rs4986790 and rs4986791 in TLR4, rs7544186 in TLR5 and rs2569190 in CD14 genes) was performed in 97 neonatal sepsis cases along with 50 controls by PCR-RFLP. **Results:** A complete absence of the mutant alleles for rs121917864 and rs5743708 was observed in both the cases and controls. Of the remaining six SNPs, a variation in the mutant allele, either in heterozygous or homozygous condition was observed only for the rs2569190 in CD14 gene in a higher proportion of the sepsis cases and was significantly associated with the risk of sepsis as compared to control group (88.0% vs 68.0%, p<0.004). Haplotype analysis indicated that one haplotype (CTTACC) was significantly higher in the sepsis group than the controls (38.0% vs 12.0%, p<0.004). **Conclusions:** The present study demonstrates that a variation in the CD14 gene and a haplotype could be associated with increased susceptibility with neonatal sepsis.

P71

A Complex Rearrangement of Chromosome 4p16 and 3p26.3 with Divergent Clinical Presentations: Report of an Extensive Indian Pedigree

Iype T1, Sreekantan-Nair A2, Barkha Singh3, Crosby AH1, Royana Singh1

1Department of Neurology, Government Medical College, Thiruvananthapuram, Kerala, India. 2Molecular Genetics, RILD Institute, University of Exeter, Royal Devon and Exeter NHS Hospital, Wonford, Exeter, UK 3Cytogenetics Unit, Department of Anatomy BHU, Varanasi, Uttar Pradesh, India

Background: The deletion of the chromosome 4p16.3 Wolf–Hirschhorn syndrome (WHS) critical region typically result in a characteristic facial appearance, severe mental retardation and growth delay, while gains of the same chromosomal region result in a more variable degree of intellectual deficit and dysmorphism. Similarly the phenotype of individuals with terminal deletions of the distal portion of the short arm of chromosome 3 (3p deletion syndrome) varies from mild to severe intellectual deficit, micro- and trigonocephaly, and a distinct facial appearance.

P72

Renin Angiotensin System and Metabolic Syndrome: An Association Study on an Endogamous Tribal Population of Uttarakhand

Vani Kandpal, M P Sachdeva

Department of Anthropology, University of Delhi, Delhi -110007

Background: Of the estimated 57 million global deaths in 2008, 36 million were due to NCDs(WHO 2011). Metabolic syndrome (MS), often acting as a predecessor for various NCDs like diabetes, CVDs, cancer etc. has become a major public health concern. Metabolic syndrome (MS) is characterised by a constellation of risk factors encompassing abdominal obesity, hypertension, hypertriglyceridemia, depressed plasma HDL cholesterol and elevated glucose. Studies have reported to confer twice the risk of developing cardiovascular disease and five times the risk for type 2 diabetes among individuals with MS. Renin Angiotensin System pathway (RAS), found to be associated with blood pressure as well as CVD, might be a potential pathway for the therapeutic treatment of metabolic syndrome. **Aims and Objectives:** The present study attempts to examine the association of RAS related gene polymorphisms (Insertion/Deletion of ACE, M235T, T174M and A66G of AGT and A1166C of AGTR1) with metabolic syndrome in an endogamous tribal population of Uttarakhand i.e. Rang Bhotia. **Material and Methods:** The study was conducted on unrelated subjects (age group 18-60) of an endogamous tribal population Rang Bhotias of Uttarakhand. Intravenous Blood was collected, from 254 individuals with informed written consent, for DNA extraction and other biochemical analysis. The polymorphisms were genotyped by PCR and PCR-RFLP methods. Statistical tools were used for data analysis using SPSS 16.0 ver. **Results and Conclusion:** Of all the five polymorphisms, none of them was found to be significantly associated with metabolic syndrome.

P73

Mutation analysis of ARX and MECP2 genes in mental retardation

Gayatri Kulkarni, Suvidya Ranade

1Department of Chemistry, Division of Biochemistry, Savitribai Phule Pune University, Pune, Maharashtra, India.

Email: suvidya@chem.unipune.ac.in

Background: Mental retardation (MR) is a common neurological disorder that affects 1-3% of population. It can be divided into syndromic and non-syndromic form. Syndromic MR is characterized by distinctive and consistent clinical findings in addition to mental retardation. Whereas in non-syndromic patients MR is the only primary symptom. On the observation of high ratio of affected males over females in MR it has been considered that X linked gene defects are the important cause of MR. ARX and MECP2 genes are most frequently mutated in MR patients. **Aims and Objectives:** Screening of ARX and
MECP2 genes in syndromic and non-syndromic MR patients and studying possible role of these genes in mental retardation.

Material and Methods: Six families of non-syndromic MR and five families of CdLS patients were selected for mutation analysis of ARX and MECP2 genes. Peripheral blood leukocyte DNA was extracted from patient, family members and control samples. Mutation screening for hotspot region of ARX and MECP2 genes were performed by PCR followed by confirmation sensitive gel electrophoresis (CSGE). Positive results of CSGE were confirmed by sequencing. **Results:** G>A polymorphism is observed at genomic position 25031781 which leads to change of amino acid A111T. Polymorphism T>A is observed at genomic position 25031330. This polymorphism changes amino acid K261M. This change does not affect protein functioning. Polymorphism T>C is observed in patient at genomic position 25031654. This polymorphism changes amino acid A153V. This change does not affect protein functioning. **Conclusion:** From this data we conclude that these mutations may affect the intellectual development of patients and cause syndromic or non-syndromic MR.

P74

Urine Metabolite Profiling for Detection of In Born Errors of Metabolism in Case of Intellectual Disability Disorders using UPLC-MS

Vidy D. Nikam, Suvidya H. Ranade

Division of Biochemistry, Department of Chemistry, Savitribai Phule Pune University, Maharashtra, India

Email: suvidya@chem.unipune.ac.in

Background: Intellectual disability (ID) is characterized by impairment of skills manifested during the developmental period, which contribute to the overall level of intelligence. Inborn errors of metabolism (IEM) appear to be rare cause of ID. These are disorders in which there is a block at some point in the normal metabolic pathway caused by genetic defect of specific enzyme. Many authors emphasize the approach that has potentially significant treatable impact on patient outcomes. **Aims and objectives:** To explore the potential of non-invasive emerging technology of Ultra-High Performance Liquid Chromatography-Mass Spectroscopy (UPLC-MS) for global urine metabolic profiling in detection of IEM in ID. **Material and methods:** Informed consent forms were collected from the parents. Patients with ID were screened. The IQ reports were obtained for statistical interpretation. Urine samples were collected from normal individuals as control. These samples were used for optimization and as standard against patients. Similarly samples were collected from patients. The metabolite profiles of control and patients were compared using software for diagnosis of potentially treatable IEMs. **Results:** Urine samples were collected from control and patients with age groups matched. High throughput global metabolic profiling was carried out by the newly emerging UPLC-MS technique. Approximately 300 metabolites were screened for every individual. The sample and control chromatograms were matched using software and results were obtained for statistical analysis. **Conclusion:** The technique of UPLC-MS is a sensitive and reproducible approach to metabolic profiling because of improved chromatographic performance providing superior metabolome coverage. It has an advantage of using urine as test sample, hence being non-invasive and easy to access.

P75

Effect of Novel Intronic Mutation c.694+8_694+18del in LDLR Gene in the Pathogenicity of Familial Hypercholesterolemia

Nagarajan ArulJothi1, Devi Ariketh1, Melvin George2, S.Elangovan3, R.A Whitall1, S.E Humphries4

1Department of Genetic Engineering, SRM University, Chennai – India, 603203 2Department of Cardiology, SRM Medical College Hospital, Chennai – India 3Cardiovascular Genetics Lab, University College London – UK

Email: aruljothi.n@ktr.srmuniv.ac.in

Background: FH is a polygenic genetic disease which is mainly caused by the autosomal dominant mutations in LDLR, APOB, PCSK9 and few other lipid metabolism genes. The heterozygous condition is common in 1/500 and homozygous 1 in a million worldwide. The exact frequency of FH in India is undetermined. **Aims and Objectives:** The study was aimed on screening LDLR, APOB and PCSK9 genes in South Indian population. The observed variations were scrutinized using various insilico tools to affirm their pathogenicity. **Material and methods:** 350 patients enrolled at SRM Medical College Hospital and Research Centre were considered for the study. Based on UK-Simon Broome criteria, 10% of them were in the definite FH criteria and the remaining 90% were in probable / possible criteria. The genomic DNA was isolated from blood by organic extraction method and exon specific primers were used for amplifying respective exons. The exons were sequenced using High Resolution Melt analysis (AccuTable HRM mix, Qiagen). The exons with heterozygous melt pattern were sequenced. **Results:** The patient SInFH 146 with characteristic heterozygous FH features had an intronic novel mutation c.694+8_694+18del which was predicted to be pathogenic by insilico tool ESE finder and splice site prediction tool in BDGP. The tool predicted that the exon splice enhancers SRSF1, SRSF6 and SRSF1 which are essential for the splicing mechanism lost their site on the DNA due to the deletion of 11 bases, 8 bases downstream of the exon intron junction. This variation in LDLR gene has never been reported so far in any other population. **Conclusion:** However, mRNA analysis needs to be carried out to substantiate the pathogenicity of the mutation in causing FH. The APOB and PCSK9 genes were negative for any other mutation in this patient. This study emphasize the importance of critical analysis of intronic variation using insilico and invitro approaches.

P76

Test For Transmission Disequilibrium Including Non-Informative Parents

Hemant Kulkarni, Saurabh Ghosh

Human Genetics Unit, Indian Statistical Institute, Kolkata.

Background: - The classical TDT (Spielman et al.1993) tests for genetic association in the presence of linkage and hence, protects against population stratification. The test has
been extended for quantitative traits using logistic regression (Waldman et. al. 1999). While these tests deal only with allelic transmission from parents who are heterozygous at a marker locus, the phenotypes status of an offspring, in practice, depends also on the allele transmitted by the other parent. **Aims and Objectives**: - We modify the TDT procedure (binary as well as quantitative traits) including non-informative parents. We also compute the type-I errors and powers of our tests under a wide spectrum of genetic models and compare with the classical TDT. **Material and Methods**: - For binary traits, we construct 2 x 2 tables to model the probabilities of allelic transmissions by the heterozygous parent and the other parent at a marker locus. We compare the observed frequencies with those expected under no linkage or no association and use a goodness of fit test. For quantitative traits, we assume a multiple response logistic model and use a likelihood ratio framework to test whether the regression coefficients are zero. Extensive simulations are performed to evaluate type-I errors and powers of the proposed tests for different inheritance models and varying probability distributions. **Result**: - The power of the test increases with increasing similarity in allele frequencies at the marker and the trait locus. We observe that the power of the test is comparable across different probability distributions. However, there is no gain in power for the proposed test compared to the classical TDT procedure. **Conclusion**: - Our results suggest that non-informative parents carry much less information on genetic association compared to informative parents and hence, inclusion of both parents in a transmission-based model does not lead to increase in power to detect association.

P77
Understanding the role of Trans acting genetic factor **KLF1** in Hereditary Persistence of Fetal Hemoglobin Syndromes in Indian population.

Neetu Rani, Reena Das
Postgraduate Institute of Medical Education and Research, Chandigarh.

Background: Hereditary Persistence of Fetal Hemoglobin (HPFH) is a rare hereditary condition characterized by persistent high level of fetal hemoglobin in adults. HPFH is caused by two classes of mutations, one involving large deletions at the β-globin cluster and the other involving point mutations in the promoters of the γ-globin genes. A variety of transcription factors such as GATA1, KLF1 (Kruppel-like factor1) have been identified which play role in globin gene regulations. Mutation which affects the activity of KLF1 gene may lead to high level of fetal hemoglobin which in turn can reduce the severity of β-hemoglobinopathies. Various types of mutations have been identified in KLF1 which leads to HPFH condition. **Aims and Objectives**: Analysis of spectrum of mutations of KLF1 gene in association with HPFH. **Material and Methods**: Blood sample of recruited subjects diagnosed with HPFH was collected in EDTA vials after getting their informed consent. Cases of HPFH-3 deletion and Asian Indian inversion deletion have been excluded. Total of 7 HPFH suspected subjects have been done. Genomic DNA was isolated from collected blood samples using Phenol-Chloroform method. Whole KLF1 gene has been amplified by PCR and sequenced. **Results**: One pathogenic mutation has been identified in exon 2 of KLF1 in one HPFH subject. Mutation is present in the 2nd zinc finger domain of KLF1 gene and first time reported in Indian patient. We also found one polymorphism in KLF1 gene in most of our cases. **Conclusion**: We found a pathogenic mutation in KLF1 gene in one HPFH subject which shows that there is some association between KLF1 gene mutation and HPFH condition. Similar study will be progressed with further collected samples.

P78
Study of Various Polymorphisms in Indian Warfarin Treated Patients

Tejasvita Gaikwad, Shrimati Shetty, Kanjaksha Ghosh.
Department of Haemostasis and Thrombosis, National Institute of Immunohaematology (ICMR), KEM Hospital, Parel, Mumbai, India.

Introduction: Warfarin (Coumadin®) is a widely used anticoagulant to prevent thromboembolic disorders. Management of anticoagulation therapy is difficult as there is a wide inter- and intra-individual variability that possibly leads to hemorrhagic or thromboembolic events despite careful dosage monitoring. Several polymorphisms in VKORC1, CYP2C9, CYP4F2, EPHX1, Calumenin, GGCX, factor IX, factor II and factor VII have been shown to be associated with warfarin dosage and other associated adverse events. **Method and Material**: 89 warfarin treated patients were genotyped for VKORC1 haplotype by direct sequencing method. 250 warfarin treated patients were genotyped for VKORC1 and CYP2C9 genotype using PCR-RFLP method. 200 warfarin treated patients were genotyped for EPHX1 c.-113 C>T polymorphism using allele specific PCR method. 150 warfarin treated patients were genotyped for CALU c.*4A>G (rs1043550) polymorphism using allele specific PCR method. 100 patients were screened for GGCX 12970 C>G genotype using allele specific PCR method. 50 patients were screened for Factor VII c.-401 G>A polymorphism using allele specific PCR method. 50 patients were screened for Factor VII c.-402 G>T genotype using direct sequencing method. **Results**: VKORC1 haplotype H1 and H2, VKORC1-1639 G>A, and CYP2C9*3 were found significantly associated with therapeutic warfarin dose requirement and risk of overanticoagulation. VKORC1 haplotype found strongly linked with VKORC1-1639 G>A polymorphism, hence addition of this haplotype does not add more information. CYP4F2 G>A polymorphism, hence addition of this haplotype does not add more information. CYP4F2 G>A (rs2108622), EPHX1 T113C (rs1051740) and CYP4F2 rs2108622: G>A polymorphism using allele specific PCR method. 100 patients were genotyped for GGCX 12970 C>G genotype using allele specific PCR method. 100 patients were genotyped for CALU c.*4A>G (rs1043550) polymorphism using allele specific PCR method. 100 patients were genotyped for CALU c.*4A>G (rs1043550) polymorphism using allele specific PCR method. 100 patients were screened for Factor VII c.-401 G>A polymorphism, hence addition of this haplotype does not add more information. CYP4F2 G>A (rs2108622), EPHX1 T113C (rs1051740), and CALU c.*4A>G (rs1043550) SNPs added minor contribution in warfarin pharmacogenomics. No contribution was noted for FVII promoter region SNPs. GGCX 12970 C>G variant was not found in Indian patients. **Conclusion**: VKORC1 -1639 G>A, CYP2C9 genotype, CYP4F2 G>A (rs2108622), EPHX1 T113C (rs1051740), and CALU c.*4A>G (rs1043550) polymorphisms will be beneficial to formulate warfarin pharmacogenetic algorithm in Indian patients. Skipping of four VKORC1 haplotype tag SNPs, Factor VII promoter region polymorphism and GGCX 12970 C>G genotype can make warfarin pharmacogenetics more cost effective in Indian population.
P79

Association of MMP-1(-181A>G) and MMP-3(-16125A>6A) Promoter Polymorphisms and Risk for HIV progression

*Shruti D Marathe, 1,2 R. R. Gangakhedkar, 1 Vilay Nema, 3 Manisha Ghate, 4 Seema Sahay, Shrada Bapat, 5 Mansa, 6 Srikant Tripathi, 7 Sheela Godbole, 8 Jyoti Pawar, 3 R. S. Paranjape, 1,2 Hari Om Singh#

1 Department of Molecular Biology, National AIDS Research Institute Pune- 411026, India, 2 Department of Clinical Sciences, National AIDS Research Institute Pune- 411026, India, 3 Department of Social and Behavioral Science, National AIDS Research Institute Pune- 411026, India, 4 Department of Epidemiology and Biostatistics, National AIDS Research Institute Pune- 411026, India

Background: Matrix metalloproteinase (MMP-1) is known as interstitial collagenase and MMP-3 is known as secreted stromelysin 1. MMPs are involved to degrade the collagen, proteoglycan of extracellular matrix, cleave the blood brain barrier and rupture the neuronal synopsis thus plays an important role in neuro-inflammatory diseases such as HAND. The mRNA and protein levels of MMP-1 were found increased in the tissue of HAND patients. Also MMP-3 is found in the saliva of HIV-infected individuals. Aims and Objectives: We aimed to investigate the association of MMP-1 -16072G/1G and MMP-3 -1612 5A/6A gene polymorphism in HIV infected patients on ART. Materials and Methods: In the present cross sectional study, we enrolled a total of 130 HIV infected patients on ART and 150 unrelated healthy individuals. Polymorphism for MMP-1 -16072G/1G and MMP-3 -1612 6A>5A genes were genotyped by polymerase chain reaction and restriction fragment length polymorphism. Results: Frequency of MMP-1 -1607 heterozygous 2G1G and variant 1G1G genotype differed significantly between HIV infected patients on ART and healthy controls (P=0.05; OR2G1G=2.90 and P=0.02; OR=3.48). Also, individual with 1G/1G genotype in recessive model conferred significantly higher risk of HIV infected patients on ART and healthy controls (P=0.019, OR1G1G = 4.00). Individual with variant genotype 6A6A of MMP-3 -1612 gene polymorphism is associated with higher susceptibility to HIV infected patients on ART (P=0.02, OR=2.52). Individual with 1G/1G genotype in recessive model were at higher risk of HIV infected patients on ART (P=0.09, OR1G1G = 2.17). None of the haplotype MMP-1 -1607 2G1/G, MMP-3 -1612 5A/6A gene was significantly associated with higher susceptibility to HIV infected patients on ART. Conclusion: MMP-1 -1607 2G1/G gene polymorphism may have role in HIV progression. Similarly, MMP-3 -1612 5A/6A gene polymorphism is associated with higher risk in HIV infected patients on ART.

P80

Association of DNA Repair Pathway Gene XRCC1 Variants with Human Male Infertility

Vertika Singh1, Deepika Jaiswal, Sameer Trivedi, Kiran Singh#*

1Department of Molecular & Human Genetics, Banaras Hindu University, Varanasi-221005, India, 2Department of Urology, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India

E-mail: singhk4@rediffmail.com

Background: Infertility is defined as a failure to conceive a child after 1 year of regular intercourse without contraception. Endogenous and exogenous factors can give rise to germ cells DNA damage. An integrated DNA repair pathway exists in the human genome to repair a series of DNA damage in somatic and germ cells. Large number of studies reported that the single nucleotide polymorphisms (SNPs) in XRCC1 may be associated with the change of DNA repair capacity, which may affect genetic susceptibility to complex diseases and the sensitivity of individuals to treatment. In the present case-control study we have evaluated the association of XRCC1 gene polymorphisms with male infertility. Material and Methods: 100 azoospermic patients and 100 fertile men as controls were recruited for the study. Genomic DNA was isolated from peripheral blood. Genotyping of XRCC1 Arg280His G>A (Exon 9) and XRCC1 G>A Arg399Gln (Exon 10) was performed using PCR-RFLP. Insilico analysis was carried out using Polyphen2 software. Results: Statistical analysis of XRCC1 Arg280His G>A showed significant association (p<0.05) with male infertility whereas XRCC1 G>A did not show a significant association. Insilico analysis by Polyphen2 software indicated that XRCC1 Arg280His G>A showed no risk with a score of 0.000 (sensitivity: 1.00; specificity: 0.00) while XRCC1 G>A Arg399Gln showed a probably damaging effect with a score of 0.979 (sensitivity: 0.76; specificity: 0.96). Conclusion: Results clearly indicates that G>A Arg399Gln variant of XRCC1 confer an increased risk in the development of infertile phenotype. The BRCT1 domain of XRCC1 protein is the most likely region of interaction with other key components of BER pathway. The Arg399Gln amino acid variant of XRCC1 is located within the region comprising the BRCT1 domains, and therefore may be associated with altered level of DNA repair in infertile men with impaired spermatogenesis.

P81

IL-17a Cytokine Polymorphisms and Risk of Early Miscarriage

Priyanka Verma1, Rohini R Nair1, Anuradha Khanna2, Nisha R Agrawal1, Kiran Singh#*

1Department of Molecular & Human Genetics, Banaras Hindu University, Varanasi, India, 2Department of Obstetrics & Gynaecology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India

Background: IL-17a has been shown important inflammatory cytokine in pathophysiology of various autoimmune diseases, cancer and other intracellular host defense. On the subject of early miscarriage (EM), it seems that imbalance in Th1/Th2/Th17 immune cells may be one of the most important Immunogenetic factor involved in the rejection of fetus. IL-17a is a secretory cytokine from Th17 cells and helps in recruitment of inflammatory cells. Therefore, we hypothesized that differential IL-17a gene level due to variants may result in susceptibility to recurrent miscarriage. Aims and Objectives: The aim of present study was to assess the association of the IL17A (rs4711998, rs8193036) gene polymorphisms in EM cases versus controls (viable intrauterine foetus and no prior miscarriage.). Material and Methods: 85 cases with a history of three or more EM and 100 controls were recruited. Isolation
of DNA was performed using peripheral blood and genotyping was done through PCR-RFLP. Results: Out of two IL-17a SNPs (rs4711998, rs8193036), rs8193036 variant showed to be a risk factor in EM cases (P = 0.0015, df = 2, OR= 0.8682 and 95% CI = 0.4138 to 1.8218 by genotype). Conclusion: The results showed a significant association of rs8193036 variant with early miscarriage. This might suggest a protective effect of this variant towards early miscarriage by modulating the effect of inflammatory cytokine IL-17a.

P82
A Novel Mutation in FRMD7 Results in Putative Disruption of the FERM Domain and Causes X-Linked Idiopathic Congenital Nystagmus in a North Indian Family
Shashank Gupta1, Ekta Pathak2, Vidya Nair Chaudhry3, Prashaant Chaudhry3, Rajeev Mishra3, Abhishek Chandra4, Ashim Mukherjee3, Mousumi Mutusdi3
1Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi-221005, India, 2Department of Bioinformatics, Mahila Maha Vidyalaya, Banaras Hindu University, Varanasi-221005, India 3R. K. Netralaya Eye Hospital & Research Centre, Varanasi-221010, India, 4Chandra Eye Care, Varanasi-221005, India

Background/Objectives: Idiopathic congenital nystagmus (ICN) is the most common form of oculomotor disorder characterized by involuntary bilateral ocular oscillations. A three generation North Indian family affected with X-linked idiopathic congenital nystagmus (XLCN) was recruited in the current study. Our aim was to identify the causal mutation for ICN in the recruited family by screening the candidate gene, FERM domain containing-7 (FRMD7). Materials and Methods: Complete protein coding region including 5’ UTR, 3’ UTR, and splice junctions of FRMD7 was screened by PCR-Sanger sequencing. A cohort of healthy individuals was checked for presence of the putative causal variant by allele specific PCR. In addition to detailed bioinformatics analysis, protein modeling was carried out to evaluate the plausible deleterious effect of the variant on the three dimensional structure of the protein. Results: Targeted sequencing revealed a novel A to G transition in exon seven of FRMD7, resulting in a conservative substitution of methionine by valine at codon 186. All the affected males and carriers in the family shared this variant; however, this was absent in the unaffected males as well as 100 unrelated healthy individuals from the same population. Protein modeling revealed that the M186V variant was present in a loop structure connecting an α-helix of FERM-M and a β-strand of FERM-C domain. Also, M186 residue resided in a hydrophobic pocket at the interface of the two sub-domains; therefore, the change p.M186V might destabilize the interaction between the FERM-M and FERM-C domains. Conclusions: We report a novel and rare mutation c.556A>G (p.M186V) in FRMD7 gene; this mutation is predicted to disrupt intra-domain interactions within the FERM domain and thus causes XLCN. We believe that the mutation identified in this study can be used for prenatal diagnosis in the future generations of the family studied.

P83
A case of Lenz Majewski syndrome: report of the sixth case in literature with PTDS1 gene mutation
Parag M Tamhankar, Shweta Kondurkar, Lakshmi Vasudevan, Vandana Bansal, Styia Menon, Dhanjit Das.
Genetic Research Center, NIRRH, Parel, Mumbai, Nowrosjee Wadia Maternity Hospital, Parel, Mumbai

Lenz Majewski syndrome is an extremely rare syndrome characterized by osteosclerosis, intellectual disability, characteristic facies and distinct craniofacial, dental, cutaneous and distal – limb anomalies. Till date only eight typical cases have been published in medical literature. Recently, mutations in PTDS1 gene have been identified as causative in five unrelated individuals. We report the first case of LMS from India and the sixth mutation proven case in the world.

P84
Heritable / genetic microcytic hypochromic anemia: Four unusual case vignettes
Prashant Sharma, Ganesh Kumar, Sanjeev Chhabra, Jasbir Kaur Hira, Pankaj Malhotra, Deepak Bansal, Amita Trehan, Reena Das
Departments of Hematology, Internal Medicine (PM), and Pediatrics (DB, AT) Postgraduate Institute of Medical Education & Research, Chandigarh

Background: Anemias with hypochromic microcytosis commonly occur due to iron-deficiency or are related to the β-thalassemia syndromes. We present four such cases with unusual genetic/heritable etiologies. Case Studies: Case 1: A 22-year-old male with anemia, unconjugated hyperbilirubinemia and spleen span 19 cm showed marked anisopoiikilocytosis with hypochromic microcytic anemia. Hb HPLC suggested HbH disease. HbH preparation showed Heinz bodies with 2-3% RBCs showing golf-ball inclusions. Heat stability test revealed an unstable hemoglobin. α-globin gene sequencing showed heterozygosity for Hb Zurich-Albisrieden (α59(E8)Gly>Arg(α2)) and Hb Sallanches (α104(G11) Cys>Tyr(α1)). Case 2: Hb HPLC in 3 members of a family with congenital cyanosis revealed a variant hemoglobin with retention time of 4.8 minutes. α-globin gene sequencing revealed Hb M-Iwate (∆α87(F8)His>Tyr) that was confirmed on PCR-RFLP. The microcytic hypochromia in the proband was explained by iron deficiency. Case 3: Bone marrow in a 7- and 5-year-old sister-brother duo with anemia, splenomegaly, and growth failure revealed erythroid hyperplasia with 36% dyserythropoiesis. HEMPAS test showed erythrocyte lysis in 4/5 control sera. Sequencing of SEC23B exon 12 revealed homozygous c.1385A→G;Y462C mutations in both siblings, confirming congenital dyserythropoietic anemia, type II. Case 4: A 20-year-old male with mild jaundice, microcytic hypochromic anemia and short stature since age 5 years had splenomegaly 3 cm below costal margin. Tests for hemolytic anemias and endocrinopathies were negative. Bone marrow aspiration performed one year earlier was reported outside as erythroid hyperplasia with moderate dyserythropoiesis. RBC
Chromosome instability syndromes or Prostate cancer is the commonest solid organ to characterize and validate a protein. Hence, it can prove to be a promising biomarker and Immunohistochemistry to detect prostate specific cancer.

Results also showed positive reactivity with prostate cancer tissue. Immunocytochemistry with purified IgG antibodies from clone 164, revealed the PC‑164 monoclonal antibody.

Aim: To evaluate a monoclonal antibody (PC‑164) raised against prostate neoplastic tissue for this pathology.

Materials and Methods: Immunoblotting, immunocytochemistry and immunohistochemistry was performed by established methods on cells and tissues using the PC‑164 monoclonal antibody. Results: Immunoblotting with purified IgG antibodies from clone 164, revealed two bands with Mr of 49,000 and 120,000 daltons when assessed with prostate cancer tissue. Immunocytochemistry results also showed positive reactivity with prostate cancer tissue and cell lines. Immunohistochemistry performed with 1:2000 dilution showed positive protein expression in prostate cancer tissue. Benign hyperplasia of the prostate also showed positivity in some areas while no expression was seen in tissues like spermatogenic hyperplasia, ovarian cancer, adenocarcinoma of brain, colon and stomach cancer. Conclusion:munoblotting, Immunocytochemistry and Immunohistochemistry to detect prostate specific proteins. Hence, it can prove to be a promising biomarker for screening, diagnosing and treating prostate cancer in the future.

P85 Evaluation of A Monoclonal Antibody as A biomarker for Prostate Cancer

Swarnalatha Daram¹, Preetha J Shetty¹, Srinivasa Chava², Kiran Kumar Vattam³, Srinivas N Pentyala⁴ Q Hasan⁵.

¹Department of Genetics and Molecular Medicine, Kamineni Hospital, Hyderabad, India. ²Department of Genetics & Molecular Medicine, Hyderabd Science Society, Hyderabad, India. ³Department of Anesthesiology, Stony Brook University, New York. ⁴Department of Genetics and Molecular Medicine, Kamineni Life Sciences, Hyderabad, India.

Background: Prostate cancer is the commonest solid organ malignancy diagnosed in men. Prostate cancer is the second most common cancer in men. The current screenings method relies on a combination of Prostate Specific Antigen (PSA) and Digital Rectal Examination (DRE) with subsequent TransRectal Ultrasonography (TRUS) and biopsy. It is well established that PSA is not a very sensitive assay as more than 30% of cancers cannot be identified while the other two are invasive procedures. Hence, there is a need to develop new screening and diagnostic markers for prostate cancer to reduce the morbidity and mortality associated with this pathology.

Aim: To evaluate a monoclonal antibody (PC‑164) raised against prostate neoplastic tissue for subsequently using it for screening, diagnosis and managing prostate cancer.

Objectives: To characterize and validate a hybridoma raised antibody (PC 164) as a potential biomarker, for prostate cancer.

Material and Methods: Immunoblotting, immunocytochemistry and immunohistochemistry was performed by established methods on cells and tissues using the PC‑164 monoclonal antibody.

Results: Immunoblotting with purified IgG antibodies from clone 164, revealed two bands with Mr of 49,000 and 120,000 daltons when assessed with prostate cancer tissue. Immunocytochemistry results also showed positive reactivity with prostate cancer tissue and cell lines. Immunohistochemistry performed with 1:2000 dilution showed positive protein expression in prostate cancer tissue. Benign hyperplasia of the prostate also showed positivity in some areas while no expression was seen in tissues like spermatogenic hyperplasia, ovarian cancer, adenocarcinoma of brain, colon and stomach cancer.

Conclusion: munoblotting, Immunocytochemistry and Immunohistochemistry to detect prostate specific proteins. Hence, it can prove to be a promising biomarker for screening, diagnosing and treating prostate cancer in the future.

P86 Cytogenetic Studies in Chromosome Instability Syndromes

Department of Assisted Reproduction and Genetics, Jaslok Hospital and Research Centre, Mumbai 400026.

Background: Chromosome instability syndromes or chromosome breakage disorders are a group of inherited human diseases unified by the abnormal behavior of their chromosomes. These single gene disorders mainly have an autosomal recessive mode of inheritance. They show hypersensitivity to specific chromosome damaging agents and manifest as high levels of breaks, radials or sister chromatid exchanges(SCE). The affected individuals exhibit a variety of clinical features as seen in Fanconi anemia, ataxia telangiectasia (AT), Bloom syndrome and Cockayne syndrome.

Aims and Objectives: To report our experience of cytogenetic studies on 125 clinically suspected cases.

Material and methods: There were 76 cases of aplastic anemia referred for the chromosome stress test with Mitomycin C (MMC) to differentiate cases of Fanconi anemia. Ataxia telangiectasia was suspected in 38 cases, where the cultures were exposed to Bleomycin and G2 cobalt‑60 irradiation. Blood cultures of 11 cases suspected to have Bloom, Cockayne or other breakage disorders were exposed to UV irradiation and treated with BrdU to check for sister chromatid exchanges. Age or sex matched controls and internal controls were used in all cases.

Results: Fanconi anemia was detected in 7/76(9.2%) cases while 4 cases were borderline positive. Ataxia telangiectasia was detected in 4/38(10.5%) cases, while another 16 cases were suspected to be mildly affected. There was no frank positive case which showed a very high frequency of SCE, also known as harlequin chromosomes. Conclusion: Fanconi anemia can exhibit mosaicism, where a few metaphases show a large number of radials, exchange figures and breaks, while a majority of metaphases are normal. Revertant mosaicism is also known to occur, where a positive case can revert back to normal. This can pose a problem in interpretation or a discrepancy of results when tested after a period of time. Hence correlation of laboratory results with clinical findings is important.

P87 Fragile-X, CNVs and single gene disorders in selected cases from western India

Dhanashree J. Warang¹, Arundhati S. Athalye¹, Anaita U. Hegde², Prochi F. Madon³, Firuza R. Parikh⁴.

¹Department of Assisted Reproduction and Genetics, ²Department of Neuropediatrics, Jaslok Hospital and Research Centre, Mumbai-400026, India.

Background: Fragile X Syndrome(FXS) is one of the common causes of the autism spectrum disorder, where the full mutation occurs mainly in males. Some women with premature ovarian failure(POF), besides mothers of affected males have the Fragile
A retrospective analysis of $\alpha\beta$ Indian Journal of Human Genetics | Supplement 1 | 2014 | Volume 20 S77

In patients as compared to controls ($p=0.0102$). IL-IL-6 cytokines were determined by PCR-RFLP and direct DNA sequencing methods. Serum levels of the proinflammatory cytokines were detected by bead based multiplex assay. SNPs of IL-IL-6, TNF-α and IL-β genes have been implicated as genetic risk factors for SLE in some populations. IL-IL-6, TNF-α and IL-β were significantly associated with clinical manifestations of the disease. Serum levels of these cytokines were found to be significantly higher in patients as compared to healthy controls ($p<0.01$). Conclusions: The IL-6 (-174G/C) and TNF-α (-308GA/AA) SNPs appear to be associated with the disease susceptibility and distinct clinical features in Indian SLE patients.

P89

FISH in Multiple Myeloma: Comparison between FISH results on unsorted bone marrow and isolated plasma cells.

Department of Assisted Reproduction and Genetics, Jaslok Hospital and Research Centre, Mumbai 400026, India.

E-mail: geneticasjaslok@gmail.com

Background: Multiple myeloma (MM), is a cancer of the plasma cells (PCs) which are rare in bone marrow (BM). Therefore the abnormal cell line may be missed if only unsorted BM is analyzed by fluorescence in situ hybridization (FISH). **Aims and Objectives:** The objective of this study was to compare the FISH test results on unsorted BM aspirates and on isolated PCs from MM patients. **Material and Method:** Heparinized BM was collected from 108 MM patients and PCs were isolated by immunomagnetic separation with the EasySep Human whole blood CD138 positive selection kit using manufacturer’s protocol. FISH was set-up with Abbott (Vysis) probes on the isolated PCs and unsorted BM to check for deletions 13q14.3, ATM, p53, and IGH rearrangements. FGFR3-IGH and/or IGH-MAF translocations were tested in cases positive for IGH rearrangements. **Results:** The percentage of cells positive for various abnormalities was 3-5 times higher in isolated PCs compared to unsorted BM. On an average in BM cells v/s isolated PCs, deletion 13q14.3 was seen in 23.6% v/s 85.4%, deletion p53 in 29.9% v/s 84.2%, deletion ATM in 8.5% v/s 37.5% and rearrangement at IGH locus in 13.8% v/s 82.2%. Hyperdiploidy and hypodiploidy were also detected with 3-5 fold increase in PCs than BM. In 6 cases, the abnormality was detected only in PCs and not in BM. Also, in 4 cases the abnormality was seen on unsorted BM (<5%) but was not seen in isolated PCs. In 32 cases, isolated PCs showed the presence of abnormalities in majority of the cells, while in unsorted BM the abnormality was seen in <10% cells. **Conclusion:** The percentage of abnormal cells detected by FISH on isolated PCs was significantly higher compared to unsorted BM aspirates. Hence in MM cases, FISH on isolated PCs is now routinely carried out.
P90

Cytogenetic study of Klinefelter Syndrome

Gajanan B. Padmawar1, Harsha M. Dangare2, Poonam P. Jain1, Nihal Thomas1, Anna Simon1, Sarah Mathai1, Mohan S. Kamath1, Aleyamma T K1, Antony Devasia1, Renu George3, Sumita Danda1, Samuel P. Oommen1, Vivi M. Srivastava1

Cytogenetics Unit1 and Departments of Endocrinology2, Paediatric Endocrinology2, Reproductive Medicine2, Urology3, Dermatology3, Medical Genetics3, Developmental Paediatrics3, Christian Medical College, Vellore, Tamil Nadu.

Introduction: Klinefelter syndrome (KS) is a sex chromosomal disorder characterized by the presence of an additional X chromosome in a phenotypic male (47, XXY). Less commonly, variant karyotypes with additional X or Y chromosomes or mosaic karyotypes with two or more differing chromosome complements may be seen. Most patients present in adulthood / after puberty with poorly developed secondary sexual characteristics / infertility. Boys with KS are identified either by prenatal diagnosis or when investigated for developmental delay. However, the phenotype is variable; therefore many patients remain undiagnosed in the absence of cytogenetic analysis which is essential for the definitive diagnosis of KS.

Patients and Methods: This is a retrospective study of all patients seen at the Christian Medical College, Vellore, between 2003 to 2013, whose karyotypes showed KS. The clinical and laboratory findings were obtained from patient records. **Results:** There were 90 patients with KS which was clinically diagnosed in only 58 patients (64%). The median age of patients was 27 years (range 1 - 51). Sixteen were below 18 years of age. Common presenting features in adults were gynaecomastia (37%), small testes (31%), infertility (28%), azoospermia (24%), obesity, tall stature and poorly developed secondary sexual characteristics (~10% each) and developmental delay (63%) and dysmorphism (75%) in boys below 10 years. Laboratory findings showed low testosterone (45/54, 83%) and elevated luteinizing hormone (32/38, 84%), follicle stimulating hormone (61/64, 95%), total cholesterol (48%), LDL (56%) and triglycerides (28%). Chromosome analysis revealed three groups of karyotypes: 47XXY in 77 (86%) patients, variant karyotypes (48,XXXY, 49,XXXXY, 48,XXXY) in 7 (8%) and mosaic 47XXY/46XY in 6 (7%). Deletion of the azoospermia factor region on the Y chromosome was seen in 1/ 14 adults. **Conclusion:** This series of KS shows the role of cytogenetic analysis which provided a definitive diagnosis in 36% of adults and 16 children in whom the features of KS were not apparent. An accurate and early diagnosis enables timely interventions and optimal management so that these patients can have a better outcome.

P91

Somatic Genomic Change of Rs9344 SNP of CCND1 in Gingio Buccal Squamous Cell Carcinoma of Indian Population

Richa Singh1, Navonil De Sarkar2, Guru Prasad Maiti2, Chinmoy Kr. Panda3, Bidyut Roy1, and Nilabja Sikdar1

1Human Genetics Unit, Indian Statistical Institute, Kolkata.
2Chittaranjan Cancer Research Institute, Kolkata

Introduction: Amplification of chromosomal region 11q13 containing so many genes including TPCN2, MYEOV, CCND1, ORAOV1, and FGF19 is frequently found in oral squamous cell carcinoma (OSCC) and other malignancies. 11q13 spans almost 14 Mb and contains more than 200 genes and is affected by various patterns of copy number gains, suggesting a complex mechanisms and selective pressure during tumor progression. **Objectives:** To study the expression and copy number variations of few genes in 11q13 regions of precancerous and cancer patient samples. To identify the somatic genomic changes in rs9433 SNP in gingio buccal squamous cell carcinoma patient samples. **Methods:** In this study, Gene expressions and copy number variations were measured by TaqMan methods for precancerous and cancer samples. In this study, genetic changes of CCND1 A870G polymorphism were analyzed by RFLP method for gingio buccal squamous cell carcinoma. **Results:** In lichen planus, precancerous lesion, only MYEOV (mean ∆∆Ct 1.26, paired t-test p value 0.01) and CCND1 (mean ∆∆Ct 0.68, paired t-test p value 0.002) were significantly down regulated. Polymorphism at G/A870 (rs9433) was studied in 84 of gingio buccal tumor patient samples. A/G < G/G, A/A < A/G, G/G < A/G, A/G < A/A conversions from normal to tumor tissues were observed in 7 gingio buccal SCC patient samples. **Conclusion:** Precancerous lesions lichen planus, leukoplaikia and gingio buccal squamous cell carcinoma are not following same pathway. First time in our study, we reported several types of genomic changes of SNP rs9344 (A870G) of CCND1 in gingio buccal tumor with respect to their normal origin.

P92

The Role of Meiotic Gene Abnormality in the Onset of Aneuploidy and Pregnancy Loss.

Abhishek Chowdhury1, Mrinalini Moghe2, Somsubhra Nath3, Pijush Das4, Girish Godbole5, Koumudi Godbole6, Manisha Doiphode6, Susanta Roychoudhury1

1Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, 2Center for Genetic Diagnosis, Deenanath Mangeshkar Hospital And Research Centre, Pune; 3Department of Obstetrics and Gynaecology, Deenanath Mangeshkar Hospital And Research Centre, Pune; 4Nityanand Clinic, Pune

Background: Spontaneous abortion accounts for 10-15% of all recognised pregnancies, around 60% of which exhibit chromosomal abnormalities. Improper separation of chromosomes result in chromosomal instability (CIN) and onset of aneuploidy. Onset of aneuploidy in meiotic cells may lead to birth defects and pregnancy loss. Key pathways leading to aneuploidy include defects in spindle assembly checkpoint, centrosomal abnormalities, alterations in kinetochore-microtubule dynamics and faulty chromosome cohesion. Literature study reveals an increasing repertoire of genes being involved in the pathways mentioned above. **Aims and Objectives:** To study of probable deregulated expression of 43 selected genes (reportedly involved in pathways leading to aneuploidy) in several aneuploid abortuses. Investigate possible correlation between pregnancy loss and defects in pathways leading to aneuploidy. Obtain expression...
signatures for first trimester and second trimester miscarriage. **Material and Methods:** Primary fetal fibroblasts obtained from abortuses and amniotic fluids of pregnant women were cultured and karyotyped. RNA was isolated from aneuploid abortuses (test) and euploid amniotic fluid samples (control). RNA quality was analysed using AGILENT BIOANALYZER platform. RT-PCR analysis of selected genes was performed in both aneuploid samples and some euploid amniotic fluid samples. Expression data was statistically analyzed using R bioconductor package (Limma). **Results:** Gene expression analysis showed deregulation of key meiotic genes in a majority of aneuploid abortuses. LATS2, MAD1L1 and CDC27 are among a few highly upregulated genes. NEK2, BUB1B, CDC20 and UBE2C have been found to be down regulated maximally across the abortuses. Spindle assembly checkpoint, spindle dynamics and cell cycle progression are the major pathways affected. Aneuploid abortuses hierarchically clustered into two discrete groups according to trimester of pregnancy termination. Abortuses in each trimester showed significant differential gene expression (p. value <0.05) when compared to euploid amniotic fluid samples (controls) and also with respect to each other. Interestingly abortuses of both trimesters show common and unique repertoire of deregulated genes. **Conclusion:** Deregulated expression of meiotic genes lead to possible fetal aneuploidy thus triggering spontaneous abortions. Multiple affected pathways can lead to aneuploidalisation. Distinct gene expression signatures seem to control fate of conception in different trimesters of pregnancy. Existence of common and unique expression signature might be indicative of them playing the central and associated roles respectively towards aneuploidy mediated miscarriage.

P93 A Study to Genotype the Primary and Secondary Modifiers of Beta Thalassaemia Among Patients from Pune, India

Sumedha Dharmarajan¹, Kalyani Divgi¹, Nita Munshi² and Anita Kar¹

¹Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune-411007, India, ²Director of Pathology, Ruby Hall Clinic, Pune-411001. E-mail: akar@unipune.ac.in

Background: Severity of beta thalassaemia is modified by primary and secondary modifiers. Primary modifiers are mutations in the HBB gene. Secondary modifiers are genes involved in the regulation of alpha and non-alpha globin chains, which include mutations in the HBA gene and polymorphisms in the HBG gene. **Aims and objectives:** To genotype hundred patients with beta thalassaemia and characterize the types of mutations in the HBB gene and in secondary modifiers, HBA and HBG genes. **Material and Methods:** Blood samples of hundred patients with a clinical diagnosis of beta thalassaemia major were obtained after informed consent. DNA was isolated and analysis for primary mutations was done using Amplification Refractory Mutation System Polymerase Chain Reaction (ARMS PCR) for five common Indian mutations. Analysis for secondary modifiers that is alpha globin deletions and alpha globin triplications was done using Gap PCR. Presence or absence of the Xmn1 polymorphism in the HBG gene was by Restriction Fragment Length Polymorphism (RFLP). **Results:** HBB mutations could be identified in all but 3 patients. Among 97 patients, 36% were homozygous, 25% were heterozygous, 38% were compound heterozygous for the beta globin mutations. The allele frequency of the IVS1-5 (G/C) mutation was 62%, Cd 8/9 (+G) mutation was 20%, 619 bp del was 12%, Cd 41/42 (-TCTT) mutation was 4% and the IVS1-1 (G/T) mutation was 1%. The structural variant HbS was not detected in any patient and the allele frequency for the Cd 26 (G/A) mutation (HbE variant) was 19%. HBA gene analysis revealed that allele frequencies of the α-3.7 deletion mutation was 9%, for the α-4.2 deletion mutation was 2%, and for the αααantis1.7 triplicated allele was 2.5% (1/40 patients). The Xmn1 polymorphism analysis identified the frequency of the wildtype C allele was 86%, whereas of the ameliorating T allele was 18%. Two ameliorating genotypes were obtained; IVS1-5/IVS1-5/α-3.7/αααT/T and IVS1-5/+/Cd8/9/+/αααα-4.2/C/T. **Conclusion:** These different genotypes indicate a variable severity of the disorder amongst patients clinically classified as beta thalassaemia major.

P94 Survey and Cytogenetic Analysis of Mentally Retarded Individuals in Human Population of Himachal Pradesh.

Savitri Verma, Neelam Thakur

Department of Biosciences, H.P.University Shimla-5.

Background: Mental retardation is a generalized disorder appearing before adulthood, characterized by significantly impaired cognitive functioning and deficits in two or more adaptive behaviors. Due to large geographic and ethnic diversity in India, there is a need to undertake studies on mental retardation. The present study is a step towards this direction and gives etiological basis of mental retardation in North Indian population. **Objectives:** To study pattern of inheritance, frequencies of mentally retarded individuals and frequency of mental disability in each genetic type. To study birth order in MR children. To study the MR on the basis of region, age, religion and sex. To study maternal age effect in MR. To evaluate the IQ levels in mentally retarded children by Intelligence Quotient Test (IQ tests). To study parental age effect in Down’s syndrome patients. To examine all MR children clinically. **Materials and Methods:** 150 mentally retarded and 150 normal individuals from population of Himachal Pradesh. Fifty suspected to be Down’s syndrome were analyzed separately to study parental age effect on mongolism. Among 150 MR individuals, 30 MR patients were analyzed cytogenetically to find chromosomal abnormalities in them. Peripheral lymphocytes of the MR probands were cultured in RPMI 1640 with 10% fetal calf serum and phytohaemagglutinin. Studies were made using standard techniques and G-banding using trypsin with slight modifications. **Results:** Pedigree analysis of 150 mentally retarded individuals resulted that 6 (4%) mentally retarded children were familial and 144 (96%) were of sporadic type. The incidence of MR was found to be higher in males than...
in females with male female (M: F) sex ratio, 1.9:1. Sex ratio was found to be 2.5:1 in 50 Down’s syndrome individuals. In 150 MR and 50 Down’s syndrome individuals no maternal and paternal age effect was seen. Among 150 MR and 50 Down’s syndrome individuals, cases with mild mental retardation were greater. By clinical analysis, it was found that MR is associated with morphological (mouth, eye etc.) and behavioral abnormalities (Obesity, neonatal jaundice, pneumonia etc.). Among 30 MR patients which were selected for cytogenetic analysis, frequency of chromosomal abnormalities was found in 18 (60%) cases. Most common autosomal abnormality was found to be trisomy 21 (Down’s syndrome) and other abnormalities were found to be deletions, ring chromosome, dicentric chromosome and marker chromosomes. Conclusion: Present investigation came to the conclusion that MR can be caused by both genetic and non-genetic factors or MR is a heterogeneous disorder. (Abstract truncated).

P95
Genetic Evaluation of Polymorphism of Candidate Genes in Patients with Type 2 Diabetes Mellitus of Jammu Region (J&K State).

Surbhi Sethi¹, Parvinder Kumar¹, Rakesh K. Panjaliya¹, Subash Gupta¹, A.J.S Bhanwer²

¹Human Genetic Research cum Counseling Centre, University of Jammu, Jammu, J&K 180006. ²Department of Human Genetics, Guru Nanak Dev University, Amritsar, 144002.

Background: Diabetes is a disease known since antiquity. Type 2 Diabetes Mellitus (T2DM) is a non-autoimmune, complex, heterogeneous and polygenic metabolic disease condition in which the body fails to produce enough insulin, characterized by abnormal glucose homeostasis. T2DM is genetically heterogeneous disease caused by the complex interplay of several environmental factors and susceptibility genes. Several candidate genes are involved in the manifestation of disease. Aims and Objectives: To investigate the role of SNP polymorphism of 4 candidate genes PGC 1 Alpha (Gly482Ser), IRS 1 (G972R), P3K (Met326lle) & KCNJ11 (E23K) in individuals predisposed to type 2 diabetes mellitus in three diversified ethnic groups (Brahmins, Khatris and Guptas) of Jammu region of J&K state. Material and Methods: Blood samples of 800 individuals (400 cases and 400 controls) were collected from different hospitals and private clinics. DNA was extracted using Phenol Chloroform method and was further analyzed for the presence of mutation. The mutation was detected by Polymerase Chain Reaction (PCR) and restriction fragment length polymorphism (RFLP) was done by using restriction enzyme. Results: Frequency of wild type and mutant genotype was calculated by using Chi square test and Hardy Weinberg Law. In addition to molecular genetic analysis, clinical features of patients were also compared with controls to ascertain their role with disease and its progression. Details regarding: mode of treatment (insulin and exercise), pattern of diet (Veg/Non Veg) family history, alcohol or smoking abuse was also recorded. The details of clinical characteristics and other features of the individuals belonging to different endogamous groups (Brahmins, Khatris and Guptas) were also compared and summarized. Conclusion: Our study concluded that there lies a strong association of PGC1 Alpha and PI3 K with type 2 diabetes mellitus.

P96
Frequency of Incidence of JAK2 V617F Mutation in Myeloproliferative Neoplasms (MPNs)
Ruby Gupta¹, Priti Satyarthi², Jogeshwar Binota¹, M.U.S Sachdeva¹, Shano Naseem¹, Neelmam Varma¹, P. Malhotra², S. Varma²

¹Department of ¹Hematology and ²Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh

Background: Myeloproliferative neoplasms (MPNs) are heterogeneous group of clonal stem cell disorders, defined by distinct clinical and cytomorphological phenotypes and, to some extent, known genetic features. According to the World Health Organization (WHO) 2008 criteria, MPNs are classified as chronic myelogenous leukemia, polycythemia vera (PV), primary myelofibrosis (PMF) and essential thrombocythemia (ET). The molecular analysis of MPNs includes detection of a specific somatic point mutation in JAK2 gene on 9p24 (JAK2V617F). This mutation has been reported in 80–97% PV, in >50% PMF and in 40–60% ET cases. Aims and Objectives: The aim of the study was to detect incidence of JAK2V617F mutation in BCR/ABL-negative MPN cases, namely PV, PMF and ET. Material and Methods: A prospective study of MPN cases was undertaken from August 2012 to November 2014. Presence of JAK2V617F mutation was detected by ARMS-PCR. Positivity for the mutation was further sub-typed as homozygous or heterozygous. Results: Out of 93 suspected MPN cases, 83 were diagnosed as MPN according to WHO 2008 criteria. Out of these 83 cases, JAK2V617F mutation was detected in 93.33% of 30 PV (32.14% being homozygous and 67.86% heterozygous), in 48.57% of 35 PMF (11.76% being homozygous and 88.24% heterozygous) and in 33.33% of 18 ET (100% heterozygous) cases. Homozygous JAK2 mutations were found to be more frequent in PV and PMF than in ET. Conclusions: The results of our study are comparable to those shown by other similar studies emphasizing the significance of JAK2V617F mutation analysis in the diagnostic algorithm of suspicious or proven BCR/ABL-negative MPN. Determination of the mutation was found to be specifically useful for diagnosis of PV, as nearly all cases were found to be positive.

P97
Differential Diagnosis to Molecular Diagnosis of Urea Cycle Disorder by Newborn Screening Using Urine GC-MS and Blood MS/MS

Vrushali S. Joshi¹, Johannes Haberle², Hemant Parekh³, Bhushan M Paland⁴

¹Navigene Genetic Science, Miraoad (E), Thane, 401107 Maharashtra, vrushali.joshi@navigene.in, **KinderspitalZurich, Universitats-Kinderklinke, Steinwiesstrasse 75, CH 8032 Zurich. ***Sunrise Super Speciality Children’s Hospital, 3-5-1105, Hyderabad- 500029.

Background: This two year pilot study investigated the screening, diagnosis and outcomes of Inborn Errors of Metabolism (IEM) in symptomatic infants and children referred
to Navigene Genetic Science Pvt Ltd. **Methods:** All symptomatic children suspicious for IEM from NICU/PICU were referred to Navigene. Urine samples collected on specially designed filter papers were analysed on GC-MS using modified MILS method for 110 IEMs. Dried Blood spots collected on Guthrie cards were analyzed by MS/MS. The diagnoses were further confirmed with molecular study wherever required. **Results:** Total 330 high-risk samples were analysed from Jan 13 till Nov 14. Age range was from 2 days to 18 years. Thirty cases (9%) were screened positive. The disorder profile consisted of methylmalonic aciduria (6), Propionic aciduria (5), 3-hydroxy-3-methyl glutaryl Co-A lyase deficiency (2), Alkaptonuria (2), Glutaric Aciduria Type I (1), Glutaric aciduria Type II (1) Isovaleric acidaemia (1), Pyroglutamic Aciduria (1) and Urea Cycle disorder (1) and others. **Case Study:** Three days female with h/o death of previous 3 siblings, presented with vomiting, seizures and hyperammonemia, Urine GC-MS analysis showed elevation of uracil and orotate confirming it as urea cycle disorder. Blood MS/MS study showed elevation of citrulline. Considering both results Citrulinenemia was suspected in this case. Molecular study by direct sequencing of all coding exons of ASS1 gene was carried on patient and parents. Index case showed splice-site mutation c773+2dupT in intron 11 of ASS1 gene in homozygous state confirming Citrulinenemia. Parents showed heterozygosity. **Conclusions:** The patients of IEM generally present with metabolic decomposition and other non specific symptoms, which delay the referral to the IEM screening and in turn results in complications and leads to high mortality. Routine NBS and genetic counseling is thus imperative for ensuring early diagnosis and preventing mortality and morbidity associated with IEM. Considering difficulties in implementation at national level, we suggest implementing routine Metabolic Screening Program for all NICU/PICU admissions. GC-MS analysis using MILS modified method allows simultaneous and accurate screening of wide range of IEMs and hence has the potential to tremendously improve the diagnostic capabilities.

P98

Functional characterization of exonic mutations causing splicing defects in autosomal recessive genetic disorders

Ajay K Chaudhary, Murali D Bashyam

Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad.

Background: Mutations in Phenylalanine hydroxylase (PAH) and N-Acylsphingosine amidohydrolase (ASA1) cause Phenylketonuria (PKU) and Faber lipogranulomatosis (FL), respectively. The effect of missense and nonsense mutations is traditionally believed to be due to altered structure/function of the expressed protein. However, role of these mutations in perturbing metabolism/processing/stability of the respective gene transcript is not well studied. **Aims and objectives:** In the current study, we assessed the effect of exonic missense/nonsense mutations causing PKU and FL on mRNA splicing. **Material and methods:** Nine (5 missense and 4 nonsense) PAH and eleven (all missense) ASA1 mutations were investigated for their effect on splicing efficiency of the respective gene transcript. Minigene constructs incorporating the mutant region for each mutation were generated and the resultant effect on splicing was investigated by transient transfection in HeLa cells. **Results:** The p.E368G (c.1103A>G) PAH missense mutation resulted in skipping of exon 11 though no splice regulatory elements were predicted in the affected region, based on computational analysis, suggesting the possible presence of an uncharacterized novel exonic splicing regulatory element (ESR). Similarly, two ASA1 missense mutations viz. p.W169R (c.505T>C) and p.E180K (c.538G>A) exhibited a deleterious effect on splicing by causing skipping of exon 8. An ESR sequence was computationally predicted (ESEfinder) to be inactivated by c.505T>C. In contrast, c.538G>A appeared to generate a new ESR element. **Conclusions:** Recent evidences including our own have indicated that missense and nonsense mutations could also manifest as splicing defects due to disruption of SREs. The current study identified 3 missense mutations severely affecting splicing by disrupting SREs, including a possible novel SRE in the PAH exon 11. The results also help in predicting potential ‘weak’ exons in genes. Overall, our studies indicate the need to include transcript analysis while predicting genotype-phenotype correlations in autosomal recessive genetic disorders.

P99

Effect of Heme Oxygenase Gene Polymorphism on Methemoglobin Levels in NADH-Cytochrome b5 Reductase Deficiency.

Shaswati Das1, Prabhakar Kedar1, Ashish Chiddarwar1, Prashant Warang1, Kanjaksha Ghosh1, Roshan Colah1

1National Institute of Immunohaematology (Indian Council of Medical Research), K.E.M Hospital Campus, Parel, Mumbai-400012.

2Calcutta School of Tropical Medicine (Govt.of West Bengal) 108, Chittaranjan Avenue Kolkata - 700073

E-mail: kedarps2002@yahoo.com, shaswati.mihir@gmail.com

Background: Recessive congenital methemoglobinemia is a rare disorder caused by NADH-cytochrome b5 reductase (NADH-CYB5R) deficiency with an autosomal recessive inheritance. Heme Oxygenase converts heme to biliverdin which is reduced by biliverdin reductase A to bilirubin. Heme Oxygenase-1 (HMOX-1) is an inducible cytoprotective enzyme involved in the generation of the endogenous antioxidant bilirubin and vasodilating carbon monoxide. HMOX-1 gene promoter contains a polymorphic dinucleotide (GT) repeat which influence the modulation of HMOX-1 gene expression in response to oxidative stress. Although a dinucleotide (GT) repeat polymorphism in the HMOX-1 promoter is thought to be involved in the pathogenesis of disorders by modulating the expression of HMOX-1 gene, however the association of this polymorphism with methemoglobin levels is not well understood. **Aim and Objective:** The aim and objective is to study to elucidate the association between the length of (GT)n repeats polymorphism and methemoglobin levels in 25 cases of NADH-CYB5R deficiency. **Material and Method:** We studied for HMOX-1 (GT)n repeats polymorphism by Gene Scan analysis on an ABI PRISM 310 genetic analyzer in 25 cases of
NADH-CYB5R deficient cases along with 25 normal controls. Results: Previously diagnosed 25 cases methemoglobinemia with a history of cyanosis, bluish discoloration due to NADH-CYB5R deficiency were investigated. The number of (GT) n repeats in the human HOMX-1 gene promoter showed a distribution of 20-32 repeats in the NADH-CYB5R deficient cases whereas number of (GT) n repeats in the 25 normal individuals showed a distribution of 32-39 repeats. Conclusion: The present study demonstrated that polymorphisms like short (GT) n repeats which are a hallmark of methemoglobinemia could be the major contributing factor for cyanosis in NADH-CYB5R deficient patients. This data could also be valuable marker to the clinicians, mainly hematologist, when attempting a definitive diagnosis for the cause of methemoglobinemia due to NADH-CYB5R deficiency that will help clinical decisions for treatment.

P100

Genetic Polymorphisms and Risk Of Ischemic Stroke and Acute Myocardial Infarction: A Hospital Based Case Control Study

Borah PK, Shankarishan P, Kalita HC, Upadhyaya N, Baruah S, Paine S and Mahanta J

Background: The patho-physiology of acute myocardial infarction (AMI) and ischemic stroke (IS) is similar. Understanding the association of polymorphic variants of candidate genes with these diseases is necessary to identify high risk population for better prevention. Aims and objectives: The present study was aimed to find out association of genetic polymorphism of angiotensin converting enzyme (ACE) insertion/deletion and endothelial nitric oxide synthase (eNOS-4) ab 27 base pair tandem repeat gene with acute myocardial infarction and ischemic stroke. Materials and Method: A hospital based case control study was carried out in Assam Medical College (AMC), Dibrugarh to recruit the study subjects. All the consecutive AMI and IS cases were recruited from the Cardiology and Neurology department of AMC. Apparently healthy, without any history of AMI and IS, age and gender matched control subjects which are unrelated to the cases were also recruited. Relevant socio-demographic and clinical information including blood samples were taken from each subjects after obtaining informed consent. Blood samples were processed for biochemical investigations, DNA extraction and PCR analysis for ACE and eNOS-4 genes. Results: A total of 232 acute myocardial infarction & 129 Ischemic Stroke cases and equal number of age and gender matched control subjects were recruited. The present study revealed significant association of Del/Del genotype of ACE gene & eNOS-4AA genotype of eNOS-4 gene with AMI. The ischemic stroke subjects revealed significant association with eNOS-4AA genotype. Significant interaction between genotypes and various environmental factors have been observed and the risk for development of either AMI or IS was enhanced. Conclusion: The present study describes the possibility in reducing the incidence of acute myocardial infarction and ischemic stroke by controlling modifiable environmental factors in a genetically predisposed population.

P101

Angiotensin II type 1 receptor (AT1R) gene polymorphisms and Essential Hypertension

Mayank Chaudhary and Shashi Chaudhary

Department cum National Centre for Human Genome Studies and Research (NCHGSR) Panjab University, Chandigarh-160 014

Background: Hypertension affects around 1 billion people worldwide and despite advancement in medical facilities and studies related to it, its percentage is still increasing, making it one of the main reasons for increased mortality. The genetic basis of hypertension has been established as 33% but only few forms show Mendelian inheritance pattern. SNPs in various genes have been reported to affect gene expression, binding efficiency or catalytic activity, therefore SNP studies in regulatory regions seems to be critical to detect its role on overall functionality of a gene. Though association studies in complex disorders have mostly been contradictory but this could be due to complex interplay of environmental, genetic and dietary patterns which are known to influence complex disorders like Hypertension. Aims and Objectives: To study association of Angiotensin II Type 1 receptor (AT1R) gene polymorphisms with Essential Hypertension. Material and Methods: Blood sample of recruited subjects was collected after getting ethical approval and individual consent. Total of 111 samples including both cases and controls were collected in collaboration with PGIMER, Chandigarh and Health Centre of Panjab University, Chandigarh. Genomic DNA was isolated from collected blood samples using Phenol-Chloroform method. rs5186 and -214 polymorphisms of AT1R were selected as both included binding sites of miRNA and transcription factor respectively. Targeted DNA fragment was PCR amplified and the genotyping of SNP was done through PCR-RFLP. Chi square test was further performed to look for the significance of these SNPs. Results: Minor allele frequency for rs5186 in cases was found to be 0.075 in comparison to already reported frequency of 0.38 in Indian study and for -214 it came out to be 0.17. Conclusion: Difference in allele frequency between different studies might be due to sample variation (samples from different regions of India) and sample sizes which differ in each study.

P102

Correlation of Arsenic Toxicity with Oral/Oropharyngeal Malignancy in West Bengal.

Pritha Pal, Ranjan Raychowdhury, Ajanta Halder

Vivekananda Institute of Medical Sciences, Ramakrishna Mission Seva Pratishthan, 99 Sarat Bose Road, Kolkata-700026

Background: In India, the age standardized incidence rate of oral cancer is 12.6 per 100,000 populations. The effect of heavy metals in the development of this carcinoma has been correlated in countries. Since West Bengal is an arsenic prone area, we have chosen this metal in our study. Its effect can be detected through the cytogenetic damage in the form of micronuclei, chromosomal aberrations, sister chromatid exchanges and aneuploidy. Aims and Objectives: The objective of this study is to find out any possible correlation between arsenic toxicity and the development of oral carcinoma in this state. Material
and Methods- Patients attending ENT Head & Neck Surgery, Oral & Maxillo Facial Surgery departments of our hospital were screened for the presence of oral/oropharyngeal carcinoma. 65 cases and 10 control individuals were selected for the study. The hair and buccal smear samples were obtained on their proper consent and questionnaire. 20 case and 10 control hair samples were analyzed by the method of flow injection-hydride generation-atomic absorption spectrometry for arsenic count and their buccal smears were Pap stained and examined for the presence of micronuclei and apoptosis. Results: Out of 20 cases, 16 showed their arsenic count above the safe limit; whereas, all the controls' arsenic count were within the safe limit. The study showed a significant difference of the micronuclei and apoptosis frequency between the cases and the controls. Conclusion: The micronuclei and apoptosis frequency proved to be significant. Although a higher percentage of cases showed elevated arsenic count, if compared to controls, yet a larger sample size is required to come to any proper correlation with the other parameters as well.

P103
Influence of Vitamin D Receptor Gene Variants on Vitamin D3 Modulated Granulysin and Perforin Positive Cells in Pulmonary Tuberculosis

Afsal K, Harishankar M, Parthasarathy RT, Selvaraj P

1National Institute for Research in Tuberculosis, ICMR, Chennai-31, India. 2Govt. Thiruvatteeswarar Hospital, Chennai-12, India.

Background: 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] is the active form of vitamin D, acts through vitamin D receptor (VDR). Variant genotypes of VDR gene have been shown to influence immune response to tuberculosis. Granulysin and perforin are cytolytic effector molecules expressed by cytotoxic T lymphocytes and natural killer cells. They mediate the lysis of Mycobacterium tuberculosis (Mtbc) infected cells and play an important role in immunity to tuberculosis. Aims and objectives: The present study was aimed to explore the regulatory role of VDR 3'UTR BsmI and TaqI polymorphic variants on 1,25(OH)2D3 modulated granulysin and perforin positive cells induced by culture filtrate antigen (CFA) of Mtbc. Material and Methods: BsmI and TaqI genotyping was done by polymerase chain reaction (PCR) based restriction fragment length polymorphism method. Peripheral blood mononuclear cells isolated from 81 healthy controls (HCs) and 79 pulmonary tuberculosis (PTB) patients were cultured with CFA with and without 1,25-dihydroxyvitamin D3 at 1X10-7 M concentration for 72 hrs. The percentage intracellular granulysin and perforin positive cells were determined by flow cytometry and data were correlated with VDR gene variants. Results: 1,25-dihydroxyvitamin D3 significantly decreased the percentage granulysin and perforin producing cells in CFA stimulated cultures as compared to cultures stimulated with CFA alone in HCs and PTB patients (p<0.05). Significantly decreased percentage of granulysin and perforin positive cells were found in HCs and PTB patients with TaqI tt genotype (p<0.05). No significant difference was observed among the BsmI genotypes in both study groups. Conclusion: The present study results suggest that TaqI tt genotype of VDR gene may be associated with decreased percentage of granulysin and perforin positive cells, which could impair immunity to tuberculosis.

P104
Short Stature - The Only Morphological Stigmata in Isochromosome Xq

Shanoli Ghosh, Sanchita Ray, Ajanta Halder

Vivekananda Institute of Medical Sciences, Ramakrishna Mission SevaPratishthan, 99 Sarat Bose Road Kolkata-26

Background: Isochromosome is defined as the structurally abnormal chromosome consisting of either two short or long arms, because of the abnormal transverse misdivision of the centromere (centric fission), resulting in unbalanced chromosomal constitution, monosomy for the missing and trisomy for the duplicated arms (Young 2005). The formation may also be because of the more complex U-type exchange resulting in acentric or dicentric products. In iso-chromosome of long arm of X chromosome clinical features are like Turner syndrome but in milder form. Aims and Objectives: To study the prevalence of Isochromosome Xq in Eastern Indian Population. Material and methods: The case records of female patients who visited our hospital (Ramakrishna Mission SevaPratishthan, Vivekananda Institute of Medical Sciences; RKMSP, VIMS) with primary amenorrhea were analyzed in our institute. All these patients underwent karyotyping as a part of evaluation of primary amenorrhea along with either of the following gonadal dysgenesis.2,3 Thyroid function tests (Free T4, TSH), ultrasound examination of genitourinary system. Serum FSH and LH were analyzed for patients who were 12 yr of age and above in our biochemistry department. The technique of karyotype analysis was performed according to guidelines from the International System for Human Cytogenetic Nomenclature (ISCN, 2005). Result: Out of 70 primary amenorrheic patients 5 patients were found to have isochromosome Xq. Two of them were mosaic Turner patients and three of them were with pure isochromosome Xq. Conclusion: A female with short stature but without typical clinical findings of TS with or without having hyper-gonadotropic hypo-gonadism should be evaluated for Karyotyping. Early diagnosis will influence the initiation of treatment thus improving the quality of life in these patients.

P105
Regulatory Role of Vitamin D Receptor Gene Variants on Vitamin D3 Modulated MIG and IP-10 Production in Pulmonary Tuberculosis

Harishankar M, Banurekha VV, Selvaraj P

National Institute for Research in Tuberculosis, ICMR, Chennai-31, India.

Background: 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) evokes its immunomodulatory effect by binding to vitamin D receptor (VDR) in the immune cells. We have shown the regulatory role of VDR gene variants on immune response in tuberculosis. The monokine induced by interferon gamma (MIG/CXCL9) and interferon gamma inducible protein-10 (IP-10/CXCL10) are involved in the recruitment of T-cells
A number of studies have shown that lead acetate and/or SAC in cultured lymphocytes (SAC), a natural abundant constituent of Garlic, are associated with increased MIG and IP-10 production. The results suggest that SAC may downregulate the inflammatory response through Cdx2 GG and TaqI TT genotypes at the site of infection. Lead acetate has an immediate impact, causing an increase in MDA levels and suppressing lymphocyte proliferation. Beside this it also increases the frequency of SCE which may be responsible for genomic damage. (Abstract truncated).

P107

Association between MTHFR C677T polymorphism and Migraine risk: a meta-analysis

Vandana Rai

Human Molecular Genetics Laboratory, department of Biotechnology, VBS Purvanchal University, Jaunpur -222003

Background: Migraine is a debilitating neurovascular disease, which is characterized by nausea, vomiting, photophobia, neurological disturbances and severe recurrent headache. Strong familial aggregation of migraine indicates a significant genetic component for the disease. Several evidences suggest that endothelial dysfunction plays an important role in migraine and that genes affecting vascular endothelial function could contribute to the etiology of the migraine. Methyltetrahydrofolate reductase gene variant (MTHFR C677T, rs1801133) plays important roles in the vascular oxidative stress response, are associated with migraine. **Aim and Objective:** A number of studies have examined the association of MTHFR C677T polymorphism with migraine susceptibility; however, the conclusions were contradictory. The aim of this study was to quantitatively summarize the evidence for the MTHFRC677T polymorphism and migraine risk.

Methods: Electronic searches of PubMed, Springer Link, Elsevier and Google Scholar databases were conducted to select case-control studies and odds ratio (OR) with 95% confidence interval (CI) was used to assess the strength of association. Statistical analyses were performed using software open MetaAnalyst. **Results:** In present meta-analysis, total 19 studies, including 9,299 cases and 27,857 controls were included. The overall analysis showed that MTHFR C677T was associated with a significant increase in the risk of migraine in the allele contrast (T vs C: OR=1.2; 95% CI=1.0-1.36; p=0.03), homozygote model (TT vs CC: OR = 1.27; 95%CI = 1.0-1.6; p= 0.03) and in the recessive model (TT vs CT+CC: OR = 2.1; 95%CI = 1.3-3.4; p=0.002). The meta-analyses stratified by ethnicity showed that individuals with the mutant T allele had increased risk of migraine (OR= 1.33; 95% CI: 0.99-1.78; p=0.05) in Asians but not in Caucasians.
Several studies have reported the limited success of genome-wide association study (GWAS) are that the current biostatistical analysis paradigm ignores all prior knowledge about disease pathobiology and/or the linear modeling framework of GWAS considers only one marker at a time thus failing to exploit their full genomic context and giving rise to multiple comparison problems. Also gene–gene (G-G) or marker based interactions might be another cause for this. This led to the development of multilocus association methods for testing association, no study is done to see its effectiveness in detecting G-G interaction.

Aims and objectives:

We adopt a more holistic approach that explores G-G interaction, combining information from multiple markers of two genes. This new approach is promising in identifying the variants along with relatively potent causal markers in gene interaction models. It has the flexibility to use knowledge from other sources (biological pathways, databases etc) and helps to prioritize genetic variations to be analyzed for G-G interactions to interpret genetic association studies in a biologically meaningful manner.

Material and Methods:

Our method is based on case-control data and the information contained at each marker is captured through a kernel function based on genotypes of two individuals. We use this genotype similarity score or kernel score to develop a novel statistical method avoiding the huge burden of multiple comparisons to a great extent. The newly proposed statistic for testing any such G-G interaction is easy to compute but the calculation of p-value poses another challenge. However, we are able to derive the asymptotic distribution of the statistic under the null hypothesis of no interaction.

Results:

The asymptotic distribution of the test statistic helps in the fast calculation of p-value even in presence of thousands of markers spread over different genes. Extensive simulations studies show that our method is very powerful in detecting any such interaction under various genetic models and is very robust.

Conclusions:

This method will have immense importance to the geneticists because of its robustness, powerful detection of interaction that may occur with or without main effects, ability to fast calculation of p-value with less multiple comparison burdens.

P107

Association Between MTHFR C677T Polymorphism and Breast Cancer Risk

Pradeep Kumar, Upen德拉 Yadav, Sushil K Yadav Vandana Rai

Human Molecular Genetics Laboratory, department of Biotechnology, VBS Purvanchal University, Jaunpur -222003

Background:

Breast cancer (BC) is one of the most frequent diseases in women that influenced by environmental, genetic and epigenetic factors. Dietary folate as well as polymorphic variants in one-carbon metabolism genes may modulate risk of breast cancer through aberrant DNA methylation and altered nucleotide synthesis and repair. Methylene tetrahydrofolate (MTHFR) enzyme plays an important role in folate metabolism which is involved in DNA methylation, repair, and synthesis.

Aims and objective:

Several studies have reported the association between methylenetetrahydrofolate reductase (MTHFR) C677T and breast cancer. However, findings have been conflicting. In order to investigate the association, a meta-analysis was performed.

Methods:

A literature search of PubMed, Google Scholar, Springer link and Elsevier databases was conducted on articles published before July, 2014. Crude odds ratios with 95% confidence intervals were calculated. Statistical analyses were performed using software open MetaAnalyst.

Result:

Sixty seven case-control studies including 26,206 cases and 30,208 healthy controls were identified. Meta-analysis showed a marginal significant effect in the allele contrast model (T vs. C: OR=1.1, 95% CI=1.02-1.12, p=0.002), Homozygote model (TT vs. CC: OR=1.14,95% CI=1.04-1.25, p=0.005), and dominant model (TT+CT vs. CC: OR = 1.1, 95% CI = 1.01–1.21, P=0.01).

In subgroup analysis stratified by ethnicity, MTHFR C677T variant was statistically significantly relevant to BC risk in Asian population (T vs. C: OR=1.11,95% CI=1.02-1.21, p=0.01; TT vs. CC: OR = 1.25, 95% CI = 1.04–1.49, P=0.01) but not in Caucasian population (T vs. C: OR=1.03, 95% CI=0.99 -1.06, p=0.05; TT+CT vs. CC: OR = 1.6, 95% CI=0.98–1.13, P = 0.10).

Conclusion: The present meta-analysis indicated that MTHFR C677T polymorphism is significantly associated with BC in overall and Asian population but not in Caucasians.

P108

Haplotype Analysis of Myotonic Dystrophy Type 1 Locus in India: Molecular Genetic Approach

Ashok Kumar1, Sarita Agarwal1, Sunil Pradhan2, Shubha Phadke1

1Department of Genetics, 2Department of Neurology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow-226014

Background:

Myotonic dystrophy type 1 (DM1) is the most common form of muscular dystrophy affecting adults and is due to trinucleotide sequence (CTG) in the 3′ UTR region of DMPK gene located at 19q13.3 chromosome. Several neighbouring genes (markers) located on the same chromosome, that are statistically associated and transmitted together (haplotype), influence the disease pathogenesis as caused by mutated DMPK.

Aims and Objectives:

The intention of the present study is to analyse...
the genetic characteristics of DM1 locus in India, for which four polymorphic markers (Hhal, HinfI, Bpm1, CKMM) were tested. **Material and Methods:** Clinically diagnosed and molecularly confirmed 26 DM1 patients and their family members were included in the study. PCR-RFLP analysis was performed for intron 5 (C/T)/Hhal, DMPK (G/T) intron 9/HinfI, Bpm1 and CKMM genetic polymorphism. The SNP Stat Online Software was used to construct haplotype group and for Linkage Disequilibrium (LD) analysis. **Results:** In all DM chromosomes: Allele 2 had higher frequency in Hhal and HinfI while allele 1 had higher frequency in Bpm1 and CKMM. Total 10, 6, 8 and 10 haplotype group had been formed in Proband (patients), Proband’s father, Proband’s mother and in combined group respectively. Haplotype combination, 2 (Hhal), 2 (HinfI), 1 (Bpm1), 1 (CKMM Taq1) and 1 (CKMM Nco1) are more susceptible (Prone) for DM1. The Hha1 & Hinf1; Hinf1 & Bpm1; and Hinf1 & Taq1 show significant LD only. **Conclusion:** The haplotype analysis in the DM1 population of India supports the linkage disequilibrium between the DM mutation and Hhal, intron 9/HinfI, Bpm1 and CKMM Taq1 polymorphisms as reported worldwide. The results of the haplotype analysis suggest a common origin of the mutation in Indian population.

P111

The Distribution of Six DNA Markers of Selected Pesticide Metabolizing and Detoxification Genes in Rural Population of Punjab, North West India

S. M. S. Chahal and Ushma J. Shah

Department of Human Genetics, Punjabi University, Patiala 147 002, Punjab

Background: The North-West border Indian state of Punjab is an agriculture dominating state and pesticides have become integral part of its rural life; the agriculture workers are highly exposed to several types of pesticides of different chemical compositions. The harmful effects of pesticides on human health have been documented worldwide. Enzymes such as cytochrome P450 super family (CYPs) and glutathione-s-transferases (GSTs) are usually involved in the initial metabolism of pesticides. Similarly, the P-glycoprotein (P-gp), encoded by the human multidrug resistance protein 1 (MDR1) gene, plays critical role in the detoxification of pesticides. No data are available in literature on the distribution of the markers of these pesticide metabolizing and detoxification genes in the people of Punjab and it is therefore that the present study was conducted. **Aims and Objectives:** The present study aims at investigating the distribution of six DNA markers of three genes involved in initial metabolism and detoxification of pesticides in rural population of Punjab. **Material and Methods:** Three hundred subjects inhabiting the rural areas in different districts of Punjab were enrolled for this work. After informed consent of the subjects, the blood samples were collected and the genomic DNA was extracted using the inorganic method. For genotyping of four SNPs viz. rs1045642 (MDR1), rs3892097 (CYP2D6*4), rs16947 (CYP2D6*2) and rs1695 (GSTP1) PCR-RFLP technique was used, and for typing GSTM1 and GSTT1 multiplex PCR was performed followed by agarose gel electrophoresis. **Results:** The present study has provided baseline data on the studied six DNA markers in the rural people of Punjab. The results have been compared with similar studies reported for the Indian and world populations. **Conclusion:** Further investigations are desirable from Punjab and the neighbouring states to appreciate the pattern of the distribution of the studied polymorphisms of the pesticide metabolizing and detoxification genes in North India.

P112

Genetic Polymorphism of Dopamine Receptor Genes and Nicotine Dependence in Smokers of North West Indian Region

Rupinder Kaur and Jasdeep Kaur

Department of Human Genetics, Punjabi University, Patiala 147 002, Punjab

Background: Cigarette smoking, like many other addictive behaviours, has a genetic component, and the dopamine D1 and D2 like receptors genes (DRD1, DRD2, DRD3) are candidate genes for contributing to these behaviours. Estimation of genetic susceptibility to tobacco smoking would be valuable in early identification and prevention of nicotine dependance. **Aims and Objectives:** The present study was undertaken to ascertain the association, if any, of dopaminergic gene polymorphisms amongst smokers by case control study. **Material and Methods** : DRD1, DRD2 (Taq1A, Taq1B, Taq1D) and DRD3 polymorphisms were genotyped using PCR-RFLP method in smokers (n=173) and non-smokers (n=188) inhabiting North-West region of India. Written informed consent was obtained before collection of intravenous blood samples for this study. DNA was extracted using standard salting out method. **Results:** All five SNPs studied, were found to be in Hardy-Weinberg equilibrium. DRD2 Taq1D (C>T, rs1800498) polymorphism showed statistically significant differences between smokers and non-smokers ($\chi^2 = 9.93, \text{d.f.} = 2, 0.007<p<0.05$). On association analysis of dopamine receptor gene polymorphisms with nicotine dependence (ND) in smokers and non-smokers, only DRD3 gene showed significant association. Individuals carrying predominant homozygous genotype CC(Ser/Ser) showed a 2 folds risk of ND when compared with those carrying mutant TT(Gly/Gly) genotypes, with an Odds Ratio of 2.08, 95% CI 1.102-3.933, (0.023<p<0.05). In dominant inheritance model, the minor (T) allele containing genotypes (TT+CT) in DRD3 gene polymorphism (rs6280, C>T), were overrepresented in smokers (19.65%+52.02%) when compared to the non-smokers (12.76%+48.93%) suggesting a genetic effect of T allele on nicotine dependence showing > 1 fold increased risk (Odds Ratio 1.57, 95% CI 1.009-2.445, 0.045<p<0.05). **Conclusion:** The present study suggests that individuals carrying minor T allele of DRD3 gene may be relatively more susceptible to develop nicotine dependance in their lifetime than others. Further studies are desirable to confirm this observation.
Non-synonymous SNPs in the Catestatin/Parastatin region of Chromogranin A: profound associations with plasma glucose, blood pressure and risk for type 2 diabetes/hypertension

Malapaka Kiranmayi1, Prasanna K R Allu1, Durairajpandian Visnuprabu2, Venkat R Chirasani1, Lakshmi Subramanian1, Bhavani S Sahu1, Saurabh Sharma2, Arasambattu K Munirajan2, Sanjib Senapati1, Madhu Khullar2, Venkatesan Radha1, Viswanathan Mohan1, Ajit S Mulasari2 and Nitish R Mahapatra1

1Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India, 2Department of Genetics, University of Madras, Chennai, India, 3Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India, 4Department of Molecular Genetics, Madras Diabetic Research Foundation, Chennai, India, 5Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, India.

Chromogranin A (CHGA) is a 48-kDa protein involved in the sorting/packaging of catecholamines and neuropeptides into secretory granules of endocrine/nerve-endocrine tissues. CHGA is also a pro-hormone that gives rise to several important bioactive peptides including two overlapping peptides: Catestatin (CST: human CHGA352-372), a catecholamine release-inhibitory peptide and Parastatin (PRST: human CHGA356-428), a parathyroid hormone release-inhibitory peptide. To identify naturally-occurring polymorphisms within CST/PRST domains, we re-sequenced this region in a Chennai population (n=2700). We discovered two novel polymorphisms (viz. Gly367Val and Arg377Ser) and two previously reported polymorphisms (viz. Gly364Ser and Arg381Trp). We further genotyped the Gly364Ser and Arg381Trp SNPs in a Chandigarh population (n=800) using Taqman assay. In the Chennai population, individuals with 364S or 381W allele displayed ~2 mm Hg higher Mean Arterial Pressure (MAP)/Systolic Blood Pressure (SBP) (p=0.04 for 364S) and ~8 mg/dl higher plasma glucose (p=0.05) levels as compared to G364 or R381 carriers. In the Chandigarh population as well, 364S variant was found to be associated with elevated blood pressure levels showing ~8 mm Hg higher SBP (p=0.004), ~6 mm Hg higher Diastolic Blood Pressure (DBP; p=0.001) and ~7 mm Hg higher MAP (p=0.001) levels. Of note, these SNPs showed drastic differences in their frequencies between the Chennai (Ser364: 6.28%, Trp381: 9.10%) and Chandigarh (Ser364: 3.48%, Trp381: 12.39%) populations. In both populations, the variant alleles were found to occur in significantly higher frequencies in diabetic/hypertensive cases than controls. Analysis of secondary structures of PRST wild-type and variant peptides using molecular modelling and molecular dynamics simulation studies revealed that the presence of 364S or 381W mutation introduces instability and causes dramatic changes in the PRST peptide structures providing insights into the molecular basis for their differential physiological effects. Thus, common genetic variations in CST/PRST appear to alter the risk for metabolic syndrome in Indian populations.
nucleophosmin gene (NPM1) has distinctive clinical, hematological and molecular features, and is included as a provisional entity in 2008 World Health Organization classification. In this study, we analyzed the frequency and features of AML with mutated NPM1 in Indian patients. Methods: One hundred consecutive patients of de-novo AML were evaluated for NPM1 mutation and their features were compared with unmutated NPM1 patients. Results: AML with mutated NPM1 was seen in 21% cases. There was female preponderance with median age of 51 years. Distinguished features in mutated group were less bleeding manifestations and bone pains; more lymphadenopathy; higher median total leucocyte and platelet count; less frequency of pancytopenia and more preserved megakaryocytes. Morphologically, cup-shaped nuclei in blasts correlated with NPM1 mutation to statistical significance. Amongst the FAB subtypes, NPM1 mutation was seen in M1, M4 and M2 subtypes with none present in M0 and M3. Immunophenotypically, there was statistically significant negativity for CD34, strong association with monocytic markers (especially CD11c), CD123 was seen at higher frequency and higher mean fluorescence intensity values (MFI) for CD33 were observed in mutated cases. Conclusions: Important findings in this study which have not been highlighted in detail in previous studies in NPM1 mutated cases include less bleeding manifestations and bone pains, lower frequency of pancytopenia and more preserved megakaryocytes, higher CD123 expression and higher MFI values for CD33. In addition, blasts with cup-shaped nuclei were found to be independent predictors of NPM1 mutations.

P116
Vascular Endothelial Growth Factor (VEGF) Polymorphisms in Gall Bladder Cancer Progression and Survival
Kumudesh Mishra1, Anu Behari M)1, Vinay K Kapoor1, M Salman Khan2, Suraksha Agrawal3
1Department of Surgical Gastroenterology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, UP, India, 2Integral University Lucknow UP India, 3Department of Medical Genetics, Sanjay Gandhi Post-Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, UP, India
Email: kumudeshmishra@gmail.com

Background: Angiogenesis plays an important role in growth, progression, and metastasis of tumors. The most important regulator of angiogenesis is vascular endothelial growth factor (VEGF). VEGF has been associated with advanced stage and poor survival of several cancers. Aims and Objective: In the present study, we evaluated the association of functional polymorphisms in the VEGF gene with gall bladder cancer (GBC) progression and survival. Material and Method: VEGF polymorphisms were studied using ARMS PCR for -1154G>A and -2578C>T, PCR - RFLP for +936C>T and -2549I>D amplified by PCR in DNA extracted from venous blood from 63 GBC patients who were operated before 2007 (to ensure at least 5 years survival) and in whom follow up data is available. Results: No significant association was found for all these polymorphisms with age, sex, presence or absence of gall stones (GS), tumor depth and distant metastasis. +936CT genotype was significantly associated and risk protective with tumor stage (P=0.017, OR=0.15). -1154GA and -2578CA genotype showed significant association with regional lymph node metastasis (P= 0.036 and 0.021) and showed protective association (OR=0.19 and 0.12). In survival analysis, patients with -2578CA genotype showed significantly longer survival (chi-square=7.017 and P=0.030). Conclusion: VEGF gene polymorphisms are important in progression and survival of GBC.

P117
Preimplantation Genetic Diagnosis: A perspective
Radha Chirputkar, Galaxy CARE IVF Center, Pune
Dr. Anuradha Vaidya, Symbiosis School of Biomedical Sciences, Symbiosis International University, Lavale, Pune

Background: Preimplantation genetic diagnosis (PGD) is an alternative to prenatal diagnosis wherein genetic testing is performed on embryos before a clinical pregnancy is established. PGD has been applied to patients carrying chromosomal rearrangements, single gene disorders and to also increase the implantation rates and reduce the incidence of spontaneous abortions. Aims and objectives: Our aim is to review the progress of PGD since its inception in terms of its applications, methodologies used and outcomes. We will also discuss the ethical issues of PGD to produce “designer babies” and further explore the role of newer technologies as alternatives to PGD. Materials and methods: Nowadays trophodermal biopsy is preferred to obtain PGD sample as against polar body biopsy or cleavage stage biopsy which were done in the past. With improvements in genetic techniques there is no longer a requirement to depend upon techniques such as FISH and PCR for chromosomal and single gene disorder detection. Furthermore, the genetic material from embryos can also be analyzed by subjecting them to array CGH or by karyomapping. However work is going on to develop novel systems or holistic approaches that incorporate computational and mathematical tools to analyze genotypic and phenotypic data. Results & Conclusions: The biggest ethical debate over PGD is the possibility of genesis of a eugenic population, in the future, wherein the children may get regarded as made-to-order consumer products. The second possibility that poses an ethical dilemma is that of discarding the not used embryos. Though PGD is certainly very reassuring for children and parents with known Mendelian disorder, new uses of PGD have raised questions about their ethical acceptability and the adequacy of regulatory structures to review new uses.

P118
Chromosomal Abnormalities Arising Due To Maternal/Paternal Meiotic Errors: An Important Cause For Recurrent Pregnancy Loss.
Anushka Shrivastava, Brjesh Kumar, Tara Nath, Sonal R. Bakhshi and Vaidehi Jobanputra
Institute of Science, NIRMA University, Ahmedabad.

Background: A miscarriage or spontaneous abortion is the natural death of an embryo or fetus in the womb. Occurrence of
m miscarriage ranges between 15-30% of all known pregnancies (Stovall et al., 2002). Studies performed on abortuses have consistently shown that approximately 50% are associated with fetol chromosomal abnormalities. The sex chromosomal abnormalities arises due to maternal/ paternal meiotic errors. The maternal versus paternal meiotic error vary substantially among the different chromosomes with nearly 50% of XXY pregnancies being the result of paternal non-disjunction whereas less than 10% of other trisomies arise by paternal meiotic error. Monosomy X, another large category (~7% of spontaneous abortions), is generally caused by loss of the paternal sex chromosome (Hassold T et al., 1992), which is consistent with the lack of maternal age effect on the incidence of 45X. Objective: Study of chromosomal abnormalities due to meiotic errors in recurrent spontaneous abortions. Methods: Chromosomal study is done by tissue culture technique, to rule out the abnormality. In cases where no chromosome preparation was possible, multiplex Interphase FISH probe set was used. Results: We report findings of 48 spontaneous abortion cases (POC samples including fetal and placental tissue). Tissue culture was performed on all 48 specimens. Successful culture and Karyotype was obtained in 14 out of 48 cases, in the remaining cases FISH was performed. We report six cases with chromosomal abnormality which includes autosomal trisomy, monosomy X, XYY, and XXY cell line in the aborted fetus. Conclusion: This study shows 6.25% of cases showing autosomal trisomy for chromosome 13, 18, and 21; and 8.33% of cases have sex chromosomal anomalies. Identification of genetic cause can have implications for proper genetic counselling and future prenatal diagnosis. Karyotype can unravel hitherto unknown microscopic anomalies; whereas FISH can unravel sub-microscopic anomalies in non-dividing cells also, but requires prior knowledge of possible chromosomal region and is also limited in terms of number of target regions. The present report emphasizes on need for including more sensitive methods like chromosomal microarray in order to increase the scope of identifying cryptic genetic aberrations.

P119

Turner Syndrome and a variant of Turner Syndrome

Department of Genetics, 1Department of Obstetrics and gynaecology, 2Department of Pediatrics K. S. Hegde Medical Academy

Background: Turner syndrome is the most common female sex chromosomal abnormality. The incidence is 1 in 2000 to 1 in 5000 live births. The most common karyotype of Turner syndrome is 45,XO in 80% of affected females and remaining may have some variants. The main characteristics of this disorder are short stature, gonadal dysgenesis, primary amenorrhea, a webbed neck, widely spaced nipples. Aims and objectives: To describe the underlying importance of chromosomal analysis. Case description: Newborn baby (case 1) was referred with webbing of neck, wide spaced nipples and long philtrum and a 14-year-old girl (case 2) with short stature, low set ears, webbed neck and no secondary sexual characteristics for chromosomal analysis. Materials and Methods: Chromosomal analysis of these cases were carried out by using standard GTG banding technique. Results: Cytogenetic analysis revealed 45, X[20] in case 1 and mos45,X[17]/46.X.del(Xp)[3] in case 2. FISH analysis was performed for case 2 on the same peripheral blood sample using CEP X/Y probe (Vysis, USA) showed 81% of the cells with single green signal for X chromosome and 19% of the cells shown two green signals, which authenticate the presence of second abnormal cell line 46,X.del(Xp). In addition, FISH study confirms there is no Y chromosome. Conclusion: Early recognition of Turner syndrome and timely investigations should be helpful. Karyotyping is definitely helpful in the evaluation of short stature and FISH study is essential to detect low level mosaicism with normal X chromosomes in such patients for the appropriate counseling.

P120

Prevalence of Malaria in A Tertiary Care Hospital in Navi Mumbai, India

Gurjeet Singh1, A.D. Urhekar2, Raksha1

1Department of Microbiology, MGM Medical College and Hospital, MGM Institute of Health Sciences (Deemed University), Sector-1, Kamothe, Navi Mumbai-410209, Maharashtra, India.

Background: Malaria is a major cause of morbidity in the tropics. Disease is of global importance, results in 300–500 million cases yearly and 1.5–2.7 million deaths annually. Approximately 2.48 million malarial cases are reported annually from South Asia, of which 75% cases are from India alone. Aims and Objectives: To find the prevalence of malarial parasites at tertiary care hospital, Navi Mumbai, India. Material and Methods: This prospective study was carried out at Department of Microbiology, MGM Medical College and Hospital, Navi Mumbai, India, over a period of one year from January 2013 to December 2013. After obtaining informed consent, 3-5 ml blood specimens were collected from antecubital vein of all patients by taking sterile precaution. Thick and thin smear were prepared and stained with Field stain and examined under light microscope using an oil-immersion lens (100X magnification) after putting a drop of paraffin oil. Positive result of malaria given if at least one asexual form of parasite was detected in 100 microscopic fields in thick blood film otherwise the report was given as negative. Blood parasite density was determined from the thin films by counting the number of parasites in 200 white blood cells (WBCs). Results: Total 4878 blood smear were studied, 809 (16.58%) were positive for malarial parasites. July to November, with peak in October (Rainy and winter) season was studied, 809 (16.58%) cases were from malaria season. Plasmodium vivax species was more predominant than Plasmodium falciparum (65.51% Vs 6.55%). Mixed species were 27.93%. Malarial infections occur more in males than in females with ratio of 3:1. Malarial infections occurred most in the age group 11-50 years with peak in age group 21-30 years. Conclusions: The prevalence of malarial infection was 16.58%, Rainy season was found to be malaria season. Plasmodium vivax was predominant, Male
Characterization of Aspergillus Species and its Antifungal Drug Sensitivity Testing

Raksha, A.D. Urhekar, Gurjeet Singh
Department of Microbiology, MGM Medical College and Hospital, MGM Institute of Health Sciences (Deemed University), Sector-1, Kamothe, Navi Mumbai-410209, Maharashtra, India.

Background: Aspergillosis is the most common fungal infection of the respiratory tract; it is usually caused by Aspergillus fumigatus and less commonly by A. flavus or A. niger. Aspergillus is a very large genus containing over 185 species to which humans are constantly exposed. At least 30 Aspergillus species have been associated with human diseases, and A. fumigatus remains the most frequent cause of invasive aspergillosis. Aims and Objectives: To identify the Aspergillus species and its antifungal drug sensitivity testing. Material and Methods: This prospective study was carried out at Department of Microbiology, MGM Medical College and Hospital, Navi Mumbai, India, over a period of six months from May 2014 to October 2014. Identification of Aspergillus species was done by standard methods. Antifungal drug susceptibility testing was done using disc diffusion method. Results: Eleven isolates were included in this study. Aspergillus niger (55%), Aspergillus fumigatus (27%) and Aspergillus flavus (18%). Aspergillus niger showed maximum sensitive to Miconazole (MIC) 100%, Nystatin (NS) 100%, Amphotericin-B (AP) 50%, and minimal sensitive to Ketoconazole (KT) 33%, Itrconazole (IT) 17%, Fluconazole (FLU) 0%. Aspergillus fumigatus showed maximum sensitive to Miconazole (MIC) 100%, Nystatin (NS) 100% and minimal sensitive to Ketoconazole (KT) 33%, Itrconazole (IT) 0%, Fluconazole (FLU) 0% and Amphotericin-B (AP) 0%. Aspergillus flavus showed maximum sensitive to Miconazole (MIC) 100%, Nystatin (NS) 100% and minimal sensitive to Ketoconazole (KT) 33%, Itrconazole (IT) 0%, Fluconazole (FLU) 0% and Amphotericin-B (AP) 0%. Conclusions: Aspergillus niger was the major fungal isolate. The antifungal drug susceptibility test showed maximum sensitivity to Miconazole and Nystatin and minimal sensitive to Amphotericin-B where as the resistant to Itraconazole, Fluconazole and Ketoconazole. This study supports the use of Miconazole and Nystatin as a choice of drugs for treatment of Aspergillosis.

Identification of Mutations in the NODAL Gene in Congenital Heart Disease Patients in Indian population

Manohar Lal Yadav1, Damyanti Agrawal2, Ashok Kumar2, Bhagyalaxmi Mohapatra1
1Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India, 2Department of Cardio-Thoracic & Vascular Surgery, S. S. Lal Hospital, Banaras Hindu University, Varanasi, India.

Background: The TGF-ß superfamily member NODAL is known to play a critical role in vertebrate embryonic development by inducing mesoderm & endoderm formation, cardiomyocyte differentiation and determining left-right axis. Defects in NODAL signaling are known to be involved in diverged pathological conditions, including heterotaxy syndrome and several other forms of isolated cardiovascular malformations. Aim and Objectives: The aim of present study is to understand the role of NODAL in human cardiac development. Therefore, in this study we have investigated whether genetic variants in NODAL gene are involved in isolated forms of congenital heart diseases (CHDs). Material and methods: We have screened 300 unrelated probands with congenital heart disease using PCR amplification of coding region of the gene followed by direct DNA sequencing method. We have also analyzed 100 age and ethnic matched controls. Results: We identified three missence (P51L, R165H and D327E) mutations and 5 synonymous (L6L, A67A, Q133Q, K317K, T318T) changes in the NODAL gene. With an exception of R165H, all other changes are not found at least in 200 control chromosomes. All these variants are conserved across the species. Phenotype analysis of the patients carrying these heterozygous mutations revealed a high incidence of septal defects. In addition to this, three intronic variations (c.235+12 C>T; c.933+20G>A; c.933+63bp G>A) have also been revealed. In silico analysis of the above mentioned non-synonymous variations reveals that these mutations have impact on the protein secondary structure and may debilitate the function of protein. Conclusion: The genotype-phenotype analysis as well as in silico studies, together suggests that the sequence variants observed in the NODAL are possibly causal for CHD. Further in vitro functional studies are in progress that would confirm the involvement of these mutations in CHD.

NAT2 Gene Polymorphism as A Predisposing Factor for Phenytoin Intoxication In Tuberculous Meningitis or Tuberculoma Patients Having Seizures- A Pilot Study

Prashant S. Adole1,2, Parampreet S. Kharbanda1, Sadhna Sharma1
1Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh-160012, India, 2Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education & Research, Pondicherry-605006, 3Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh-160012, India.

Background: Simultaneous administration of phenytoin and isoniazid (INH) in tuberculous meningitis or tuberculoma patients with seizures results in higher plasma phenytoin level and thus phenytoin intoxication. Genotypic status that influences response to drug treatment is of increasing importance. Aim & objective: Present study observes the effect of allelic variants of N-acetyltransferase 2 (NAT2) gene on the prevalence of phenytoin toxicity. Material & Methods: Sixty patients with tuberculous meningitis or tuberculoma with seizures and taking INH and phenytoin simultaneously for minimum period of seven days were included in study. Plasma phenytoin was measured by high performance liquid chromatography. NAT2 gene polymorphism was
Identification and Characterization of Novel Non-synonymous Variation in Paired Domain of PAX9: Probable Cause of Congenital Tooth Agenesis in an Indian Family

Tanmoy Sarkar1, Smitha K2, Mubeen3, A. R. Pradeep4, Vijayalakshmi K.R.3, Suman3, Preethi Rajguru3 and Parimal Das1

1Centre for Genetic Disorders, Banaras Hindu University, Varanasi, India. 2Department of Periodontology. 3Department of Oral Medicine & Radiology, Government Dental College and Research Institute, Bengaluru, India.

Background: Congenital tooth agenesis (CTA) is a common developmental anomaly in human. About 20% of world population lack at least one 3rd molar (Wisdom teeth) by birth which is presently considered as an evolutionary consequence by scientific communities. Excluding 3rd molar agenesis about 2.5 to 6.9% of the population suffers from CTA affecting other tooth type. CTA could be of familial or sporadic in origin and found either in syndromic or non-syndromic condition. So far 5 major genes could be of familial or sporadic in origin and found either in syndromic or non-syndromic condition. One of the probable causes for CTA in this family is on chromosome 2p11.2 of the short arm of chromosome 2. A nsSNP in the N terminal region C→T resulting in Ala 135Val was found to be related to a newly detected inborn error metabolic disorder.

Aims and Objectives: In present study the methodology for analysis of nsSNP rs 121918591 in the N terminal region of IGK using a heather to unreported PCR-RFLP method is attempted and standardized. Material and methods: Blood samples were collected with their informed consent under ethical clearance no ICEC/4/2011. Primer designing was undertaken using gene sequence downloaded from NCBI. Genomic DNA was isolated from blood and subjected to amplification. Results: The PCR reaction conditions were standardized vis-à-vis salt concentration and annealing temperature. The amplified fragment was digested with Faul and the products loaded on 12% PAGE. The visualization methodology for the fragment pattern on PAGE was standardized using different concentrations of gels, presence or absence of glycerol and voltage required for obtaining best band pattern, intensity and sharpness.
P126

Role of Intrinsic SNP and Its Association with Oral Squamous Cell Carcinoma in the Populations of Western Part of India.

Sejal M. Desai & Kiran S. Kalia

BRD School of Biosciences, Sardar Patel University, Vallabh Vidyanagar-388120, Gujarat.

Background: Oral Squamous Cell Carcinoma (OSCC) – a subset of Head and Neck Cancer is the sixth most common cancer worldwide and leading cancer in India. Gujarat, western part of India is a prime tobacco growing belt, henceforth high consumption of tobacco among the population of this region led to high occurrence of OSCC, includes deregulation of genes involved in PI3K/AKT(Phosphatidylinositol 3- kinase – Akt) pathway, such as PIK3CA (Phosphoinositide-3- kinase catalytic α) and PTEN (Phosphatase and Tensin homologue).

Aims & Objective: The present study was aimed to find the genetic association of various polymorphisms in intron 9 of PIK3CA gene and intron 5 of PTEN gene with primary OSCC tumors; since these are the polymorphic regions studied in various human cancers.

Materials & Methodology: 50 OSCC patients for PIK3CA gene, 60 OSCC patients for PTEN gene and 36 healthy individuals were included in the study. The polymorphisms in Intron 9 of PIK3CA and intron 5 of PTEN gene were analyzed by PCR-direct sequencing. Result: We have observed rs114587137 (C>T) and rs17849071 (T>G) SNPs in intron 9 of PIK3CA gene and rs35560700 (C>T) SNP in intron 5 of PTEN gene. T/T genotype of rs17849071 (T>G) has found the risk for developing OSCC; while T/G genotype has seemed protective effect against OSCC (P=0.01). We have found significant association of rs35560700 (C>T) with OSCC; where frequency of C/T genotype was found significantly higher in OSCC patients when compared to healthy individuals (P<0.0003). Conclusion We found significant inverse association of rs17849071 (T>G) SNP in PIK3CA gene with OSCC pathogenesis, suggesting that presence of G allele in an individual would greatly protect against the development of OSCC. Moreover, T allele of rs35560700(C>T) SNP in PTEN gene has shown significant rich for developing OSCC. As this is a population base study, larger sample size would be helpful to confirm our findings globally.

P127

Analysis of Obesity Related Gene with Special Reference to Solute Carrier Family 6 (Amino Acid Transporter), Member 14 (Slc6a14): A Computational Approach

Rajan K Singh, Permendra Kumar, Mahalingam K

Division of Biomolecules and Genetics, School of Biosciences and Technology, VIT University Vellore-632014, Tamilnadu (India)

Obesity is an epidemic, natural consequence of over nutrition and sedentary lifestyle. It is a condition characterized by an excess of body fats with globally projected around 1.12 billion obese individuals by 2030. Single nucleotide polymorphism (SNP) suggests genome-wide screens to identify common genetic variants associated with obesity. In this context, non-synonymous single nucleotide polymorphism (nsSNPs) used as a potential biomarker to identify deleterious and neutral effect on protein function. The main objective of this work to analyze the functional impact of SLC6A14 gene present on chromosome Xq23 in relation with X-linked obesity by using computational tools and strategies. For this purpose firstly, SNPs were retrieved from dbSNP database. The computational algorithms namely, PolyPhen, SIFT and I-Mutant 2.0 were used to identify the potentially deleterious nsSNPs. Herein, one SNP (rs182839907) was found which gave the positive results with all three above mentioned computational tool. The gene network analysis was carried out with STRING 9.1 tool showed that the following genes, SLC16A2, SLC22A1, SLC22A6, SLC23A1, SLC29A1, SLC29A2, SLC38A1, SLC38A2, SLC38A5, SLC39A6 and SLC6A14 are functionally associated with SLC6A14 gene. The homology models of the SLC6A14 proteins having the nsSNPs were predicted using SWISS-MODEL software. Ramachandran plot using PROCHECK algorithm was done to check the stereochemical properties of the predicted models. Root Mean Squared Deviation (RMSD) was calculated by superimposing with native model. The free energy values for the mutant models were high as compared to their native structure. The present study may suggest that nsSNP (rs182839907) would be a potential biomarker to screen the obesity among individuals.
homology models of the FTO proteins having the snSNPs were predicted using SWISS-MODELLER software. The stereochemical properties of the models were checked by Ramachandran plot using PROCHECK algorithm. Root Mean Squared Deviation (RMSD) were calculated by superimposing with native model. The free energy values for these mutant models were high as compared to their native structure. The present study suggests that these four nsSNPs can be used as biomarkers to screen obesity susceptibility.

P129

Effects of Gender on The Relationship Between IL6 Promoter Polymorphism and Lymphocyte Gene Expression in Schizophrenia

Deepthi Venugopal1,2, Venkataraim Shivakumar3, Sunil V Kalmady4, Manjula Subbanna5, Ashwini Rajasekaran1,2, Dania Jose1, Anekal C. Amaresha6, Sri Mahavir Agarwal7, Janardhanan C. Narayanawamy7, Monojit Debnath7, Ganesan Venkatasubramanian8

1Department of Human Genetics, NIMHANS, Hosur Road, Bangalore-560029, India. 2Translational Psychiatry Laboratory, Department of Psychiatry, Neurobiology Research Centre, NIMHANS, Hosur Road, Bangalore-560029, India.

Background: Gender differences in the pathogenesis and clinical manifestations of schizophrenia are postulated to be secondary to putative influence of sex hormones especially estrogen. Estrogen has significant immunomodulatory effects and neuroimmunopathogenesis is one of the overarching explanatory paradigms to understand schizophrenia. Among several immune factors, interleukin-6 (IL6) plays a significant role; increased IL6 expression both in the periphery and brain is an established observation in this disorder. Aim: To examine the potential effect of gender on the relationship between IL6 promoter polymorphism and gene expression. Methods: Antipsychotic-naïve schizophrenia patients (DSM-IV) [N=53] were examined in this study in comparison with healthy controls [N=73]. DNA and RNA was extracted from lymphocytes that were isolated from peripheral blood. The IL6 174 G/C polymorphism (rs1800795) was genotyped by TaqMan 5’ nuclease assay. IL6 gene expression was quantified using reverse transcription followed by TaqMan gene expression assay. Results: There was a significant impact of gender-by-genotype interaction on the lymphocyte gene expression level in schizophrenia patients [M:F=33:20; GG:GC=37:16; F=5.3; p=0.026]. Male schizophrenia patients carrying GC genotype had significantly greater expression of IL6 than those with GG, however, this was not observed in healthy controls [M:F=49:24; GG:GC=52:21; F=0.3; p=0.561]. Conclusion: Our preliminary findings suggest potential gender-specific influence of IL6 promoter variant on its expression in the lymphocytes of schizophrenia patients. The lower levels of estrogen, which is found to have a modulating effect on IL-6 expression, could be a reason for enhanced expression of IL-6 in male schizophrenia patients in comparison to female patients. However, the lack of such gender-specific interaction in the healthy control group needs further evaluation.

P130

A Novel and Recurrent Lynch Syndrome Associated Indian Founder Mutation in Mismatch Repair (MMR) Gene MLH1

Nikhil Khan, Pradnya Kowtal, Gouri Pandit, Shujath Abbas, Jyoti Patel, Sharada Haralkar, Rajiv Sarin

Cancer Genetics Unit, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharhar, Navi Mumbai-410210

Background: Lynch syndrome (LS) is an autosomal dominant inherited colorectal cancer syndrome due to germline mutations in MMR genes, mostly MLH1 and MSH2. MMR gene mutation may occur at high frequency in certain geo-ethnic groups due to founder effect. Founder mutations facilitates genetic testing and counselling but are yet to be reported in MMR gene in South Asians. Aims and Objectives: To identify recurrent MMR gene mutation and establish its founder effect. Material and Methods: Germline mutation in MMR genes was analyzed in our cohort of 70 Indian LS families. In the initial analysis, a novel germline MLH1 mutation c.156delA was identified in 2 unrelated families who hailed from the same community (Shia Momin) and region (Patan, Gujarat), indicating a possible founder mutation. This mutation was screened in 68 LS probands in our cohort and in samples from 400 healthy individuals or cancer affected cases from Shia Momin community. Following PCR-CSGE analysis of MLH1 Exon 2, mutation was confirmed by Sanger sequencing. Founder effect was established by haplotyping with a panel of 6 highly polymorphic microsatellite markers flanking the mutation site. Results: The c.156delA mutation was identified in 16 individuals from 6 families hailing from Gujarat (5 Shia Momin & 1 Hindu family) with some mutation carriers being unaffected so far. This mutation was absent in probands who were not from Gujarat. Haplotype analysis revealed a conserved region of approximately 2.5 Mb in all mutation carriers, providing an evidence for a common ancestor between these extended families. Conclusion: This study on the largest LS cohort identified the first Indian founder mutation in MLH1 gene. As this founder mutation is recurrent in the Gujarati Geoeconomic group and detected by simple PCR-CSGE method, its screening could be a cost-effective strategy for genetic testing of Indian LS suspects, especially those originating from Gujarat.

P131

Genetic Counseling as an Essential Component of Thalassemia Management for Mitigating Disease Burden

Gayatri R.Iyer1, Akhilesh Pujar1, Tarrunnum Jalali1, Bibi Umea Salma1, Subhadra Poornima1, Suman Jain2, Q Hasan1

1Department of Genetics and Molecular Medicine, Kamineni Hospitals, LB Nagar, Hyderabad, Telangana 500074. 2Thalassemia & Sickle Cell Societe, Purani Haveli, Chatta Bazaar, Hyderabad, Telangana 500002

Background: Beta-thalassemia is a type of hemoglobinopathy wherein the body fails to produce enough hemoglobin leading to decreased oxygen supply to the organs causing life threatening
problems. It follows autosomal recessive mode of inheritance requiring both the copies of the gene to be nonfunctional to cause the disease. Thalassemia and Sickle Cell Society (TSCS) in Hyderabad is a referral center where the patients from different parts of Telangana, Andhra and Maharastra-Karnataka border come for subsidized transfusion and chelating drug therapy. Aims & Objectives: To evaluate the problems faced by families with a child affected with thalassemia and the role genetic counseling plays in creating awareness to mitigate the burden of this disease both at the family and community level.

Materials & Methods: 151 Families at TSCS were randomly interviewed during the transfusion session of their child. Details were recorded in a well designed proforma about the clinical, financial and social factors associated with diagnosis and treatment of their child. Results: In only 39% of the cases the primary health care provider diagnosed Beta-thalassemia, while in the majority of the cases, especially from smaller districts, the families had to travel to Hyderabad for diagnosis and still travel for transfusions monthly once/twice. Most of the cases were diagnosed between the ages of 3months to 5 years. Contrary to popular belief 46% of the cases were born to non-consanguineous couples. 14% of the patients had an older sib with thalassemia. Conclusions The study revealed that primary care physicians require training to diagnose thalasemia. TSCS can train personnel so that sub-centres can be set-up in districts for management of the disease. Appropriate genetic counseling should be given for preventing recurrence of the disease in the same family especially by promoting extended family screening and appropriate pre-natal testing. Effective Government policies need to be introduced to mitigate the burden of this disease in our population.

P132
A Case Report of Breast and Ovarian Cancer Family

Bibi Umasa, Subhadra Poornima, Kiran Kumar, Q.Hasan

Department of Genetics & Molecular Medicine, Kamineni Hospitals, Hyderabad, Department of Genetics, Kamineni Life Sciences, Hyderabad

Introduction: Breast cancer is a type of cancer originating from the breast tissues. Both men and women can be affected by it. Detecting it early can significantly reduce the death risk. Hereditary Breast and Ovarian cancer (HBOC), is an inherited genetic condition and an autosomal dominant inheritance pattern. About 6-8% of breast and ovarian cancers are hereditary. Women who carry BRCA1 or BRCA2 mutations have an estimated lifetime risk between 60% and 85% for developing breast cancer. Case Study: A 82 year old woman was diagnosed with Ovarian carcinoma during her treatment her granddaughter approached the department of genetics to know her risk of getting the neoplasm. A detailed pedigree indicated that two of her daughters and one granddaughter had already succumbed to a breast malignancy. Hence molecular testing for BRCA genes was advised. Next Generation Sequencing found a pathogenic heterozygous mutation in Chr 17: 41276044 del CT in exon 2 of BRCA1 gene with a predicted amino acid change p.Glu23Valfs*17, which was reported as a pathogenic mutation. Genetic Counselling: Based on the pedigree different members of the family with a risk of inheriting the disease were advised targeted mutation analysis for the pathogenic mutation. Four family members were found to be positive for that mutation. These individuals were provided genetic counseling and placed in the surveillance programme, which included regular monitoring for ovarian cancer by CA 125 and ultrasound and mammogram for breast cancer screening. Other family members were offered genetic counseling based on the BRCA mutation result for appropriate screening and management. Conclusion: Genetic counseling in this family was tricky as the same pathogenic mutation was responsible for early onset breast cancer and late onset ovarian cancer leading us to hypothesize that, variants of unknown significance in the same gene maybe responsible for the differences in the age of onset or other minor genes maybe playing a role.

P133
Genetic Variability of 15 Autosomal STR Loci in Central Indian Populations

Pankaj Shrivastava, Toshi Jain, Umang Gupta and Veena Ben Trivedi

DNA Fingerprinting Unit, State Forensic Science Laboratory, Department of Home (Police) Govt. of Madhya Pradesh, Sagar-470001 (MP) India

Background: India is a country known for its biological and human diversity. Central Indian region of India is also very much diverse and has been centre of attraction for studying genetic variations. Studies using various markers have been helpful in understanding the relationship between ancestry, demographic and migration history of humans.

Aims and objectives: The study was planned with the aim to determine the genetic variation and genetic relationship at 15 Autosomal STRs loci (TH01, D3S1358, VWA, D21S11, TPOX, D7S820, D19S433, D18S51, D8S1179, CSF1PO, D13S317, FGA, D18S51, D8S1179) in four Castes and two Tribal populations of Central India for forensic purposes. Material and Methods: DNA was extracted from blood samples collected from 485 unrelated individuals using phenol-chloroform extraction procedure. Real Time PCR ABI 7000 was used for quantification of DNA Amplification was done using Amp/STR identifier Kit (ABI) and Investigator® IDplex Plus PCR Amplification Kit (Qiagen). Results: Statistical analysis of the data revealed all the studied STRs loci were highly informative and discriminating with Combined Power of Discrimination >0.9999. All these loci fall under Hardy-Weinberg equilibrium after Bonferroni correction (p>0.003) except loci D18S51, D7S820 and CSF1PO. Genetic affinity of these populations was also analysed using pair wise genetic distance (Fst) based method including neighbour joining tree and PCA plot. Conclusion: The present study reveals DNA profiling based on STRs in combination with appropriate reference population database is a useful tool for genetic characterization and forensic investigation.
P134

Cytogenetic survey of Primary Amenorrhea - A study of 818 cases from Department of Cytogenetics, Metropolis Healthcare Limited.

Divya Shivaram shetty, Shailesh Pande, Vidyasalaskar, Anurita Pans, Gauri Pradhan, Chaitali parab.

Metropolis healthcare ltd, Kohinoor city mall, Commercial Bldg A, 4th Floor, Opp LBS Marg, Vidyavihar West, Mumbai – 70

Background: Amenorrhea is the absence or cessation of menstruation and seen normally in prepubertal, pregnant and post menopausal females and leads to 20% of patients with infertility. Genetic disorders pose considerable health and economic burden on family. Though most of the genetic diseases cannot be cured, early detection and medical intervention is helpful. Hence, laboratory diagnosis is crucial for confirmation of clinical diagnosis. **Aim:** To estimate the type and related incidence of sex chromosomal abnormalities in referred cases with history of primary amenorrhea (PA). **Method** Total of 818 cases were referred for Conventional Cytogenetic evaluation in which clinical indication of PA was common and was associated with other findings like USG abnormality, short stature, genital abnormalities, poor development of secondary sexual characters and infertility. 72 hrs Blood Lymphocyte Cultures were setup and chromosomal study was done by GTG banding. Further confirmation of diagnosis by targeted FISH using centromeric probes for chromosomes X and Y and locus specific probe for SRY gene wherever applicable was done. **Results:** Out of 818 cases, 461 were referred with indications of PA and 357 for PA and related findings. Out of 461 cases, 377 (81.77%) showed normal chromosomal constitution (46,XX) and 84 (18.22%) showed abnormal chromosomal constitution. Out of 357 cases, 239(66.94%) showed normal chromosomal constitution (46,XX) and 118(33.05%) showed abnormal chromosomal constitution. Percentage-wise distributions of abnormal cases are as tabulated below:

<table>
<thead>
<tr>
<th>Abnormal chromosomal constitution</th>
<th>Percentage-wise distribution of 461 cases with PA (%)</th>
<th>Percentage-wise distribution of 357 cases with PA and associated findings (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerical aberrations</td>
<td>12.58% (n=58)</td>
<td>19.60% (n=70)</td>
</tr>
<tr>
<td>Structural aberrations</td>
<td>3.47% (n=16)</td>
<td>9.52% (n=34)</td>
</tr>
<tr>
<td>Translocations</td>
<td>0.86% (n=4)</td>
<td>1.12% (n=4)</td>
</tr>
<tr>
<td>Normal variants</td>
<td>1.30% (n=6)</td>
<td>2.80% (n=10)</td>
</tr>
</tbody>
</table>

Conclusion: Our studies revealed that majority of cases with clinical manifestations have sex chromosomal abnormalities. Timely cytogenetic evaluation and Genetic Counseling in such cases may be essential for management and can improve the quality of life.

P135

Genetic Polymorphism of Glutathione S-Transferase Genes GSTT1, GSTM1, GSTP1 and Susceptibility to Breast Cancer.

Gurmeet Kaur1, Satbir Kaur1, Dr. Raman Arora2

1Department of Human Genetics, Punjabi University, Patiala-147002 Punjab. 2Mohan Datta Cancer Hospital, Ludhiana.

Background – Glutathione S-transferase (GSTs) play an important role in the detoxification of xenobiotics by catalyzing nucleophilic attack by glutathione on electrophilic compounds. Earlier studies have indicated an association between genetic variants of GSTT1, GSTM1 and GSTP1 genes and an increased risk of developing various types of cancer. In the present study an attempt has been made to determine the association of these variants with susceptibility to breast cancer, which is the most common cancer among women in India and second most common cancer worldwide. The incidence of breast cancer in India in 2012 was 27% of all the cancers. **Aims and Objectives:** To investigate the role of genetic polymorphisms of GSTT1, GSTM1 and GSTP1 genes in susceptibility to breast cancer. **Material and Methods:** A total of 300 subjects comprising of 200 breast cancer women and 100 normal healthy women from Punjab were genotyped for GSTT1, GSTM1 and GSTP1. Genotyping of GSTT1 and GSTM1 was done by allele specific PCR and GSTP1 was done by PCR-RFLP method. **Results:** The distribution of genotypic frequencies of GSTT1null, GSTM1 null and GSTP1 variants (Ile105Val, Val105Val) were 36.5%, 51%, 47.5% and 14.5% in patients and 34%, 41%, 49% and 12% were in controls respectively. Comparison between patients and controls revealed a significant increase in the genotypic frequencies of GSTT1 null (OR=1.841), GSTM1 null (OR=1.498) and GSTP1 variant Ile105Val (OR=1.0051) among patients as compared to controls. The study also indicated that individuals carrying both GSTT1 and GSTM1 null genotypes had a greater risk of developing breast cancer (OR=2.23). **Conclusion:** Results support an involvement of GST gene polymorphisms, both independently and in combination, in susceptibility to breast cancer.
enzyme. Digested products obtained were run on 3% agarose gel and RFLP was studied by gel documentation system. Results: CETP levels was significantly higher in cases than control group (p = 0.035) while LCAT levels were not significantly different between cases and controls (p = 0.764). Frequency of the AA genotype was more (72%) in cases compared to controls (64%) while CA genotype was found in 26% cases and 34% controls with one CC genotype in each group. Mean CETP Level was significantly higher in cases with AA genotype compared to controls (p<0.05) while CETP in cases with CA genotype was higher although not significant (p=0.05) compared to controls. Conclusion: We found significantly higher levels of CETP in cases who had positive angiography for atherosclerosis as compared to controls which suggest an association of CETP with atherosclerosis. Also AA was more frequently present in cases (72%) compared to controls (64%). However, ours being a small study, more studies with larger sample size are needed to confirm genotypic risk associated with CETP (-629C/A) gene polymorphism especially AA homozygosity.

P137
A Rare Trisomy 18p Syndrome Characterised by Microarray Analysis and Metaphase FISH
Anju Joshi Sharma, Meena Lall, Sunita Bijaria, Pushpa Saviour, Preeti Paliwal, Poonam Saxena, Surbhi Mahajan, Ishwar Verma
Centre of Medical Genetics, Sir Gangaram Hospital, Rajender Nagar, New Delhi 110060

Trisomy 18p is a rare chromosomal aberration, in which there are three copies of the short arm p of chromosome 18. Only 27 such cases have been documented in medical literature. We report Trisomy 18p syndrome in a 4 year old male child with developmental delay, dysmorphism, and dolicocephaly and club foot. Microarray analysis was performed as a first tier test, using Agilent 4x180K(A CGH+SNP array), which revealed duplications of 15Mb genomic region on 18p11.32 - p11.21 (64847 bp to 15165737 bp) and 340kb on 18p11.21 (14196900bp to14537567bp) of chromosome 18p. This aberration was further validated by karyotyping and fluorescence in situ hybridisation (FISH). It was found to be present in all metaphases of cultured lymphocytes in the form of an extra structurally abnormal chromosome (ESAC) which showed the presence of an aqua signal when hybridised with Vysis DNA probe for CEP18/spectrum aqua. Karyotyping and FISH for CEP 18 were done in both parents who did not show any evidence of the ESAC. Therefore the occurrence of ESAC in the proband was de novo. Some reports suggest that in Trisomy 18p syndrome, the phenotype is found to be variable and varies from normal to mild. Molecular characterization of the ESAC is important for understanding the phenotype-genotype correlation. The recurrence risk in the subsequent offsprings is dependent on the inheritance, size, presence of euchromatin, level of mosaicism and presence of uniparental disomy(UPD).Microarray is a powerful tool for molecular characterisation and it detects the exact region and involved genes in any ESACs, thus contributing to personalised genetic counselling.

P138
Negative Epistatic Interaction of Sickle Cell Trait and Alpha-Thalassemia Against Severe P. falciparum Malaria.
Prasanta Purohit, Siris Patel, Snehadhini Dehury, Satyabrata Meher, Kishalaya Das Dilip Kumar Patel, Pradeep Kumar Mohanty
Sickle Cell Clinic & Molecular Biology Laboratory, V.S.S. Medical College, Burla, Odisha, India.

Background: Malaria is the most important public health problem in India. Alpha-thalassemia and sickle cell trait hypothesized to protect against severity of P. falciparum malaria. Population based study showed the negative epistatic between these two inherited hemoglobin disorders. Aim and objective: To study the influence of alpha-thalassemia and sickle cell gene on the severity of P. falciparum malaria and its epistatic interaction when co-inherited together in the individual. Material and Methods: In this case-control study, 232 adult patients with P. falciparum malaria admitted in the Department of Medicine, were analyzed for sickle cell gene and alpha-thalassemia at Sickle Cell Clinic and Molecular Biology Laboratory, V.S.S. Medical College, Burla, Odisha. Age, gender and ethnic matched 232 individuals with no history of malaria since 5 years were taken as control. Sickle cell was confirmed by ARMS-PCR and alpha-thalassemia was analyzed by Multiplex-PCR. Results: Out of 232 patients, 184 were HbAA, 36 were HbAS and 12 were HbSS where as in control 198 were HbAA and 34 were HbAS. In both the patients and controls with HbAA, the incidence of alpha-thalassemia was 39.1% in patients compared to 51.0% in control (adjusted odd ratio [OR], 1.62; 95% CI, 1.08-2.43; p=0.023). Similarly the incidence of alpha-thalassemia was 22.2% in patients with HbAS compared to 52.9% in control with HbAS (adjusted [OR], 0.25; 95% CI, 0.09-0.71; p=0.012). The incidence of ARF, Jaundice, cerebral malaria and death were significantly lower in patients (HbAA) without alpha-thalassemia compared to patients (HbAA) without alpha-thalassemia. Patients co-inherited with both HbAS and alpha-thalassemia had a greater HbA/HbS ratio compared to patients with HbAS without alpha-thalassemia (p<0.01) leading to more clinical severity. Conclusion: Both sickle cell trait and alpha-thalassemia enjoy a selective advantage separately against P. falciparum malaria. These protective effects of both hemoglobin disorders become cancel when co-inherited together in the individual.

P139
A Novel Symptomatic B0-Thalassaemia Mutation Cd-15(-T) in Compound Heterozygote First Time with Sickle Cell Gene from Eastern India & Response to Hydroxyurea
Satyabrata Meher, Dilip Kumar Patel, Siris Patel, Kishalaya Das, Snehadhini Dehury, Prasanta Purohit, Arpita Jana1, Subhra Bhattacharya1, Pradeep Kumar Mohanty, Biswanath Sarkar1
Sickle Cell Clinic & Molecular Biology Laboratory, VSS Medical College & Hospital,Burla, Odisha. 1Anthropological Survey of India, 17 J N Road, Kolkata, West Bengal
To study the genotype-in our centre. XmnI polymorphism and hundred confirmed cases with HbS was done by ARMS-PCR and direct DNA sequencing. Four considered for confirmation of HbS phenotype correlation of \(\beta \) -thalassaemia. Cases with severe clinical symptoms of repeated VOC, BT, Hosp. **Aim and objective**

Molecular characterizations of HbS\(^{\beta} \) thalassaemia and response to HU therapy. **Material & method** Standard laboratory investigations confirming HbS and \(\beta \)-thalassaemia were adopted. CE-HPLC was done to quantify hemoglobin fractions. PCR-ARMS was adopted to confirm known mutations and direct \(\beta \) globin gene sequencing was done to identify rare mutations. CBC and Biochemical investigations, Radiological examination of shoulder and Hip joints, USG of abdomen were done to correlate clinical findings. Hydroxyurea (HU) was administered at a low and fixed dose (10 mg/kg/day) based on indications. **Result** Both the 2 cases of HbS\(^{\beta} \)-thalassaemia with codon 15 (-T) mutation had repeated VOC, BT, Hosp as the presenting symptom at 2 and 3 yr of age respectively. CBC agreed to typical thalassaemic red cell picture (MCV 66.9±1.8, MCH 19.7±0.42) with high HbA2 (6.75±1.4) in CE-HPLC. The cases were confirmed to be HbS\(^{\beta} \)-thalassaemia with a novel \(\beta \)-thalassaemia mutation at codon 15, TGG_GG; del T by direct globin gene sequencing. The patients were treated with Hydroxyurea (HU) and are under regular follow up since 2 yr with 100% response. **Conclusion** All HbS\(^{\beta} \)-thalassaemia are not symptomatic but this novel \(\beta \) thalassaemia when co-inherited with HbS showed clinical manifestation. Hydroxyurea has been a drug of choice for the SCD patients. It responds well and effective even at a low dose of 10 mg/kg/day and can be administered this drugs to cases of HbS\(^{\beta} \) Thalassaemia patients.

P140

Genotype-Phenotype Correlation in Patients with HbS\(^{\beta} \)-Thalassaemia in Eastern India.

Snehadhini Dehury, Sirish Patel, Prasanta Purohit, Satyabrata Meher, Kishalaya Das, Dilip Kumar Patel, Pradeep Kumar Mohanty

Odisha Sickle Cell Project (NHM), Sickle Cell Clinic & Molecular Biology Laboratory, V.S.S.Medical College, Burla, Odisha, India

Background: HbS\(^{\beta} \)-thalassaemia is a variant form of sickle cell disease (SCD), resulting from the inheritance of HbS and \(\beta \)-thalassaemia genes. In the state of Odisha, the frequency of sickle cell and \(\beta \)-thalassaemia cases are 21.0% and 3.75% respectively. **Aim and OBJECTIVE**: To study the genotype-phenotype correlation of \(\beta \)-thalassaemia mutation in the clinical severity of HbS\(^{\beta} \)-thalassaemia. **Material And Methods**: Out of 7625 screened, 2049 SCD cases with HbA2 >3.5 were considered for confirmation of HbS\(^{\beta} \)-thalassaemia. Cases were diagnosed by CE-HPLC, parents study and confirmation was done by ARMS-PCR and direct DNA sequencing. Four hundred confirmed cases with HbS\(^{\beta} \)-thalassaemia were studied in our centre. XmnI polymorphism and \(\alpha \)-thalassaemia were studied by RE digestion and GAP-PCR. Cases with severe clinical features were treated with hydroxyurea at a low dose of 10 mg/kg/day. **Results**: Four prevalent Indian \(\beta \)-thalassaemia mutations, viz. IVS1-5(G→C), cd15(G→A), FS41/42(-CTTT), cd 30(G→C) accounted for 96.25% (385), 1.0% (4), 0.75% (3), 0.5% (2) respectively. Two rare mutations viz. cd15(-T) and cd126-131(-17bp deletion) reported for the first time from this part were found in 1.0% and 0.5% respectively. Of 385 cases with IVS1-5(G→C) mutation, 252 (65.5%) were symptomatic, while rest were asymptomatic. All the cases carrying other 5 mutations had presented with severe clinical manifestations. **Conclusion**: In our study, clinical variability of patients with HbS\(^{\beta} \)-thalassaemia could not be essentially explained by the possible association of Xmn1 polymorphism and \(\alpha \)-thalassaemia. Additionally, IVS1-5(G→C), the common mutation in our study was found to be frequent in both the symptomatic and asymptomatic groups. Hence we feel strongly a need to assess the possible role of other genetic modifiers linked to the \(\beta \)-thalassaemia mutations especially with IVS1-5(G→C) in explaining clinical variability of HbS\(^{\beta} \)-thalassaemia.

P141

De-Novo Compound Heterozygous Mutations in MYH7 Gene in Patient with Restrictive Cardiomyopathy

Mitali Kapoor, Amitabh Biswas, Soumi Das, S Seth, B Bhargava, V R Rao

1Laboratory of biochemical and molecular Anthropology, Department of Anthropology, University of Delhi, New Delhi, 2Dept. Of Cardiology, AIIMS, New Delhi, India

Background: Restrictive cardiomyopathy is a myocardial disorder with impaired ventricular filling, with either normal or decreased ventricular volume, and normal or increased ventricular mural thickness and normal systolic function. The sarcomeric genes are known to be associated with restrictive cardiomyopathy. Many recent studies showed the association between the variable expressivity and age of onset of disease to be associated with different factors making this disease a complex phenotype. Disease complexity with double heterozygous and compound heterozygous is known to be associated with the severity of disease phenotype in recent reports. **Aims and Objectives**: The aim of study is to evaluate the clinical phenotype of proband and screening of candidate gene to find the genetic abnormality of the patient for understanding of interrelationship between the phenotype and genotype. **Materials and Method**: Diagnosis was based on ECG, 2D-echocardiography, cardiac catherisation.5ml of blood sample was collected and DNA was isolated using phenol-chloroform method. Sequencing of the hotspot region of MYH7 gene i.e. exon 23 was done by Sanger method (ABI 3730). Screening of family members available was also done clinically as well as genetically. The study was ethically approved by Institutional committee and informed written consent was taken from all participants. **Results** On the basis of clinical assessment of ECG, 2D-echocardiography and
cardiac catheterisation, patient was diagnosed with restrictive cardiomyopathy without hypertrophy. On genetic testing, de-novo compound heterozygous mutation was found in the exon 23 in MYH7 gene i.e. p.E902k and p.D906N. These variants were absent in 85 other cardiomyopathy patients. Screening of parents and siblings was also done clinically as well as genetically and found to be normal. Both mutations on bioinformatic analysis found to affect protein function. Presence of compound heterozygous mutation may explain the early age at onset and the severity of condition. **Conclusion** This report of compound heterozygous will further provide basis for the complexity and variable expressivity of phenotypes in patients in such complex diseases. This also provides basis that expression of disease phenotype may be modified by different mutations in same gene or different genes or by different environmental factors.

P142

Sickle Cell Disorder- A Family Study with total Ten Children (8 Homozygous and 2 Heterozygous) from Satpuda Hilly Ranges of Maharashtra

G.T Kulkarni1 G.H.Yeola1 P.N.Dalvi2 Y.S.Prabhune3, R.V.Patil4, S.L.Kate5 and R.Manchanda6

Sickle Cell Disorder is a common blood genetic disorder found among tribal population groups from Maharashtra State. Highest Prevalence (about 20%) have been reported among tribal population groups Madia, Gond, Pardhan, Halba from Gadchiroli Dist. and Bhil & Pawara from Nandurbar District. Taking into consideration the need of tribal groups residing in the Satpuda hilly ranges of Nandurbar Dist. We established Community Control Program Centre with help of local tribal youths. The Centre is located between 3rd and 4th Hilly ranges of Satpuda at Roshmal Bk. Tal. Dhadgaon Dist. Nandurbar, Popularly known as Sickle Cell Dawakahana. The centre provides diagnostic facilities, Possible Treatment (Ayurvedic mostly), and counselling for last 16 years. We also conduct extended family studies of the index patient. While screening the families we came across one family wherein parents are Heterozygote’s, having total ten children, 8 Homozygote’s and 2 Heterozygote’s. We collected all information from the family and carried out haematological and other investigations. To our information, this is the first largest family report with 8 Homozygote children in world medical literature. We will present family pedigree analysis along with Haematological investigations.

P143

Analysis of Alu Insertion/Deletion Polymorphisms in Four Endogamous Groups from North West India

Gagandeep Singh1,2, Rubina Sharma2, AJS Bhanwer3 and Indu Talwar4

1Department of Anthropology, Panjab University, Chandigarh, India.
2Department of Human Genetics, Guru Nanak Dev University, Amritsar, India.

Background: Due to its geographical location, Northwest India acted as a major route for human migration to Indian subcontinent since prehistoric and historic times. Therefore, it possesses an exclusive genetic profile primarily due to various migratory events in this region. **Aim:** The present study assessed the population genetic structure and diversity in four ethnically different caste groups from, North West India (Punjab). **Methods:** A total of 646 unrelated samples belonging to four endogamous groups (Bania, Brahmins, Jat Sikh and Scheduled Caste) were genotyped for four human-specific insertion/deletion polymorphic loci (ACE, APO, PLAT, FXIIIIB) using polymerase chain reaction (PCR). **Results:** All the loci were found to be in Hardy Weinberg equilibrium (HWE) except FXIIIIB in all the ethnic groups. The average heterozygosity for all the loci in these ethnic groups ranged from 0.221±0.252 to 0.359±0.237. Overall gene diversity (Fst) was found to be 8.6%, probably indicating ancestral commonalities of the populations. The phylogenetic analysis revealed that Brahmin, Jat Sikh and Bania were closer to each other than Scheduled Caste group. **Conclusion:** The picture emerging from our analysis revealed lesser genetic heterogeneity among Brahmin, Jat Sikh and Bania groups as compared to Scheduled Caste group despite of their similar geographical proximity.

P144

Improved Multiplex Ligation Dependent Probe Amplification Technique for Studying Copy Number Variations

Bhavyasri Vennapusa, Shivangi Nath, Naga Mohan Kommu

BITS Pilani-Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal Hyderabad-500078.

Background: Extensive research around the world lead to identification of copy number variations (CNVs) in several candidate genes as leading causes of many complex disorders including Schizophrenia, Autism etc. Multiplexed Ligation dependent Probe Amplification (MLPA) is a popular downstream technology to analyse the identified CNV prone region in a sample. Conventional MLPA (MRC Holland) needs about two days’ time for complete analysis and around 1500.00 INR per reaction per sample. The reference probes (P300, P200) available for analysis were found to lie in genomic regions containing single nucleotide polymorphisms (SNPs) and/or CNVs. There is a need for improvising the technique to avoid false CNV calls at lesser cost and time. **Aims and Objectives:** Design new reference probes for more reliable results. Reduce total cost of technique facilitating more sample’s analysis. Reduce total MLPA run time for quicker results. **Materials and methods:** P300 probe mixes studied using Database of Genomic Variants identified SNPs and CNVs. New reference probes are designed against SNP and CNV free regions using MAPD software as described by Zhi et al.,2010. **i-MLPA** (Improved MLPA) uses proprietary reagents to reduce the total cost and turnaround time by reducing hybridization time from 16-20hrs to 30mins. Each end product mixed with LIZ500 marker, formamide is electrophoresed on automated DNA sequencer and results were analysed using GeneMarker software. Statistical analysis of 16hr and 30mins data of same samples is done using chi-square and two tailed t-test. **Results and conclusion:** No ambiguous calls were seen using new probe mix unlike with p300 mix. Chi-square analysis of peak ratios of 16hr and 30mins data shows high
similarity with expected ratios. No significant difference in signal intensities and peak ratios were observed. This projects i-MLPA as genuine method providing more promising results in less duration at a cost of around 300.00INR per reaction per sample.

P145
Molecular Testing for Inherited Genetic Diseases: A Metropolis Laboratory Experience
Pratiksha R Chheda, Shaliesh S Pande, Milind G Chanekar, Yogita D Salunkhe, Anurita P Pais, Sandeep S Warnghade, Nilesh Shah
Metropolis Healthcare Ltd.,

Background: There is a high prevalence of genetic disorders in India which is attributed to the lack of awareness, consanguineous marriage favored in many communities and non-availability of good genetic counselors. Also, there is a dearth of good genetic testing labs in all the parts of India that offers wide range of genetic testing menu including the prenatal testing. Aims and Objectives: The purpose of our study was to develop reliable assays for molecular detection of common genetic disorders prevalent in Indian population. Materials and Methods: Seven Hundred and Seventy Three clinical samples were referred to Metropolis healthcare limited in the last 2 years with clinical indication for different genetic disorders. Molecular assays were developed and used for clinical genetic testing for the below mentioned disorders. N=152 Cases - Duchene Muscular Dystrophy, N=112 Cases- Spinal Muscular Atrophy, N=176 Cases- Spinocerebellar Ataxia (SCA) Panel, N=25 Cases Friedrich Ataxia, N=149 Cases- Huntington Disease, N=140 Cases ‑ Y‑Chromosome Microdeletion N=20 Cases ‑ Rare Beta‑Globin gene variants. Pre‑ and Post‑Test Genetic counseling was offered to the patient or family members. Results: Out of 152 cases with suspicion of DMD, 97 (63.8%) cases were positive for one or more of the 18 exons (Begg’s and Chamberlain’s) set. The remaining cases with strong clinical suspicion were counseled for additional testing for 79 exon deletion/duplication and point mutation detection by sequencing. In case of SMN1 exon 7 deletion for SMA, 45.53% (51 cases) positivity was reported. Complete beta globin gene sequencing was performed for identification of rare hemoglobin variants and beta thalassemia mutations as indicated on hemoglobin electrophoresis..... Conclusion: Molecular genetic testing is essential for confirmation of clinical diagnosis as well as for screening of family members. The carrier parents can be further counseled for pre-natal diagnosis for future pregnancies. Thus, lab diagnosis and counseling are very important to control birth of children inheriting the genetic disorders. (Abstract truncated).

P146
Association of 14bp Insertion/Deletion (indel) Polymorphism of HLA-G Gene in Women with Recurrent Miscarriages from Amritsar Region of Punjab, India.
Vishali Kalotra, Neha Sudhir, Amandeep Kaur, Anupam Kaur
Department of Human Genetics, Guru Nanak Dev University, Amritsar-05, Punjab, India.

Background: Recurrent miscarriage (RM) is classically defined as the loss of three or more consecutive pregnancies before 20th gestational week. The occurrence of RM has been estimated in 1–3% of couples attempting to bear children. Human leukocyte antigen (HLA)–G gene is a non‑classical HLA class Ib gene located within the major histocompatibility complex (MHC) at 6p21.3 position. HLA-G is thought to contribute to maternal acceptance of the semi‑allogenic foetus, modulating the maternal immune system during pregnancy. The 14‑bp insertion/deletion polymorphism may influence both the HLA‑G isoform splicing patterns and HLA‑G mRNA stability. Aims and Objectives: The present study is a case‑control study designed to study the association of 14bp indel polymorphism of HLA‑G gene in women with RM and their comparison with age matched healthy control women. Material and Methods: This study included 44 women with at least two or more consecutive miscarriages before 20th gestational week and 40 healthy control women with at least one healthy live born. Genotyping was done by Polymerase Chain Reaction (PCR) followed by Agarose Gel Electrophoresis. Result: Out of 44 women with recurrent miscarriages, 11 (25%) were found as homozygous (+14bp/‑14bp) for insertion allele, 9 (20.5%) as homozygous (‑14bp/‑14bp) for deletion allele and 24 (54.5%) as heterozygous (+14bp/‑14bp) for insertion/deletion allele. Out of 40 control women, 13 (32.5%) were found as homozygous (+14bp/‑14bp) for insertion allele, 11 (27.5%) as homozygous (‑14bp/‑14bp) for deletion allele and 16 (40.0%) as heterozygous (+14bp/‑14bp) for insertion/deletion allele. Conclusion: Our pilot study demonstrated that 14bp indel polymorphism of HLA-G gene has no significant association with RM in women from Amritsar region of Punjab. However it is an ongoing study and statistical analysis of more samples is needed to get a conclusive result.

P147
DNA repair gene defects and its association with myelodysplastic syndrome
Dolly Joshi, Kanjashika Ghosh, BabuRao Vundinti
National Institute of Immunohaematology (ICMR), 13th floor, New multistoried building, K.E.M Hospital, Parel, Mumbai-12, India

Background: Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal hematopoietic stem cell disorders characterized by dysplastic changes in the bone marrow, ineffective hematopoiesis resulting in cytopenias, and an increased risk of developing acute myeloid leukemia (AML). The progression of disease is a consequence of the accumulation of mutations, probably due to an increased DNA damage burden and/or reduced ability to deal with the damage. Aim & Objective: To study the expression of DNA repair genes and cell cycle checkpoints in MDS to understand the association of DNA repair defects with MDS. Material and Methods: The study was carried out in 44 MDS patients. Expression analysis of DNA repair genes and cell cycle checkpoints in MDS was performed using Real‑Time PCR system. Relative quantification was carried out with the ∆∆CT method using the endogenous control genes (GAPDH). Single nucleotide polymorphisms (SNPs) of DNA repair genes (XRCC1, hOGG1, XRCC3, XPD and RAD) were carried out by PCR-RFLP. Expression of cell cycle checkpoint (Chk1 and Chk2) was carried out by western blotting. Results:
Among 44 MDS patients the MDS subtype frequency was 50% (RA), 11% (RAEB I), 13% (RAEB II), 5% (RARS), 18% (RCMD) and 3% (MDS-U) respectively. In our study, the frequency of AA (XRCC1 Arg280His) and CT (XRCC3 Thr241Met) variant allele was higher in MDS-RAEB II and RAEB I patients as compared to other subtypes. The DNA repair genes Lig4, Ku70, Ku80 and XRCC3 expression was significantly down-regulated in MDS patients compared to controls. The significant difference was not observed in cell cycle checkpoint protein expression in MDS. Conclusion: The study suggests that the DNA repair genes are associated with high risk MDS. However, a large number of samples need to be studied to confirm the association of DNA repair gene with MDS pathogenesis.

P148

Glucose-6-Phosphate Dehydrogenase Deficiency-Who,When,Why And How.
Jummanah Jarullah1, Bushra M. S. Jarullah2, Soad AlJaouni1, Mahesh C. Sharma2
1Haematology Research Lab, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, KSA. 2Department of Biotechnology, Kadi Sarva Vishwavidyalaya, Ghandinagar, India. Email: jumanaj@gmail.com

Background: Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzymopathy affecting 400 million people, globally. G6PD deficiencies being X-linked genetic syndrome, females are more affected than males. Heterozygous females go undetected in a commonly used method. G6PD deficiencies in adults are missed due to skewing of X-chromosomes. Aim and Objective: The aim of the study was to identify who is entitled for G6PD deficiency. Different methods for detections of G6PD deficiency were rationalized. When and Why G6PD deficiency detection is so important was targeted. Material and Methods: Cross section retrospective study was conducted on 2568 Saudis inclusive of 800 adult males, 784 adult females and 984 neonates (448 male and 536 females) were studied from King Abdulaziz University Hospital (KAUH) in Jeddah, Western Saudi Arabia. Blood samples were screened for G6PD activity by fluorescence spot test, semi quantitative color reduction test, spectrometric quantitative evaluation and DNA molecular typing. Hemoglobin (Hb) was measured on the same sample by BC-3200 Auto hematology Analyser. Results: The prevalence of G6PD deficiency identified by fluorescence spot test was 4.6% and all were deficient male. By semi quantitative method, the prevalence rate was 3.2% and again all were males. Results: The prevalence rate was 3.2% and again all were males. When and Why G6PD deficiency detection is so important was targeted. Conclusion: G6PD deficiency detection should be performed all neonates. It was concluded that many undiagnosed partially G6PD deficient female are missed by commonly used screening method. There is no reliable biochemical screening assay to detect G6PD heterozygous, since standard methods test both red cell populations in single sample. Only DNA analysis meets the requirement. In view of the cost effectiveness, we suggest to undertake the DNA analysis in samples, identified with revised cutoffs.

P149

Genetic Association of ISL1 Gene Polymorphism with Chronic Otitis Media with Effusion
Ranjini1, Saumyadip Sarkar1, PV Ramchander1, Chinmay Sundar Ray2, Narayan Chandra Biswal3
1Human Genetics Lab, Institute of Life Sciences, Chandrasekharpur, Bhubaneswar. 2Shrirama Chandra Bhanj (SCB) Medical Colleges, Cuttack,

Background: Otitis Media (OM) is a most common childhood disease characterized by middle ear infection. Chronic otitis media with effusion (COME) is a condition lasting at least for three months arises due to interaction between environmental and genetic factors. Previous studies have shown high eosinophil count in patients with otitis media. Recently, mutations in ISL1 gene were found to be associated with otitis media development. Aims and Objectives: The aim of the study was to identify the genetic associations between ISL1 gene variants with COME and to evaluate their functional role in disease manifestation. Materials and Methods: We have conducted a case control study to identify the genetic associations between ISL1 gene polymorphisms and COME. To determine the eosinophil percentage in blood plasma, total blood count was estimated in cases and controls. Results: Screening of coding region and exon-intron boundaries of ISL1 gene identified seven known polymorphisms (c.-492A>G, c.-240G>A, c.28+17C>T, c.504A>G, c.513G>A, c.567C>T and c.651A>T) and four novel variations (c.-405G>A, c.498G>C, c.504T>A and c.733G>A). Association testing for these variants have identified the sex-specific association between c.504A>G polymorphism (P=0.0322) in females with COME. The decreased minor allele ‘G’ frequency in cases (0.227) compared to controls (0.352) indicates its protective role in disease process. Family based study ensured the absence of transmission of protective genotype ‘GG’ to the affected individuals which confirmed the protective role of the minor allele ‘G’ in disease development. Further, total blood count analysis of COME subjects showed abnormally high eosinophils in 40.7% of cases. Patients with GG genotype had significantly lower peripheral eosinophil counts than with the AG and AA genotype (P< 0.05) suggesting the protective role of this variant in OM development. Conclusions: This study demonstrated the sex specific association of c.504A>G variant with COME and also significant association of different genotypes for this variant with high eosinophil count in COME cases.

P150

Role of GSK3β and Cyclin D1 in The Etiology of Esophageal Cancer
Mohammed Khalil Mohiuddin1, Sreenivas1, Boddu Prabhaker2, YR. Ahuja3, Vasavi Mohan2,3
1Department of Genetics, Vasavi Medical & Research Centre, Lakdi-ka-pool, Hyderabad, India. 2Department of Genetics & Molecular Medicine, Kamineni Hospitals, LB Nagar, Hyderabad, India. 3Department of pathology, Osmania General Hospital, Hyderabad.

Background: Esophageal Cancer, regardless of the histological subtype, has the worst survival statistics among all malignancies.

ABSTRACTS
Risk of malignant transformation is associated with both external factors (tobacco, infectious organisms etc) and internal factors (inherited mutations, immune conditions, and mutations etc). GSK3β has been shown to be a crucial enzymatic regulator of a diverse number of cellular functions including cell structure, metabolism, and survival. GSK3β-dependent threonine phosphorylation triggers nuclear export of cyclinD1 and subsequent cytoplasmic degradation. Inactivation of GSK3β stabilizes the cyclinD1 which can lead to increased proliferative activity of the cell and aid malignant transformation. There is also evidence for a pathologic role of GSK3β in promoting tumor cell survival, proliferation and invasion. The expression studies of these two proteins will give an insight on their etiological role in cancer of esophagus. **Aims and Objective** Understanding the role of GSK3β and CyclinD1 in the etiology of esophageal carcinogenesis by evaluating expression levels of GSK3β and cyclinD1 in esophageal pathologies including cancer. **Material and Methods** A total of 132 esophageal pathologies (FFPE archival samples) were evaluated for GSK3β (cytoplasmic, Tyr216 active form) and CyclinD1 (nuclear) expression levels by immunohistochemistry method. Screening was performed by three independent observers and data was analyzed. Data was categorized based on the histology/pathological type and statistical analysis was performed. **Results** 132 esophageal pathologies included Squamous cell carcinoma (n=66), Adenocarcinoma (n=41) and other pathologies (n=25). A total of 48% of cancer samples showed elevated/active GSK3β expression compared to 40% of other pathologies (Hyperplastic cells) absence/poor expression in normal tissue. 18% of these esophageal cancer cases showed elevated nuclear expression of CyclinD1 as compared to none of the controls or other pathologies. **Conclusion** Active form of GSK3β (Tyr216) was found to be expressed in 48% and 40% of cancer and hyperplastic cell population indicating its possible cell proliferative and anti-apoptotic role, influencing esophageal carcinogenesis. Overall 18% of cancer samples showed cyclinD1 overexpression. These may be the cases where mutation in cyclinD1 may lead to escape from GSK3β-dependent phosphorylation and nuclear export into cytoplasm for degradation. Overexpression of Cyclin D1 in 18% of the cancer cases may lead to re-replication of DNA thereby leading to malignant transformation. Studies on cyclinD1 and GSK3β inhibitors may give insight towards targeting therapies for esophageal cancer.

P151

Screening of Cervical Smears: Promoter Methylation of Hmlh1 & Rarß2 Genes and Prevalence of HR-HPV Sub-Types in Cervical Pathologies

1. Department of Genetics & Molecular Medicine, Vasavi Medical and Research Centre, Hyderabad, India; 2. Department of Genetics and Molecular Medicine, Kamineni Hospitals, Hyderabad, India; 3. Department of Pathology, Yashoda Hospital, Hyderabad, India; 4. Department of Pathology, Kakatiya Medical College, Warangal, India

Background Though persistent infection with oncogenic Human Papillomavirus (HPV) types is considered the most important risk factor for cervical cancer development, less than 5% of women with HPV will eventually develop cervical cancer supporting that other molecular event, like gene methylation may co-contribute to cervical carcinogenesis. In India, due to lack of awareness of screening and non-availability of appropriate infrastructure, cervical cancers are detected at advanced stages where cure is difficult. **Aims & Objectives** Identifying women who are sexually active for more than 3 years, with an abnormal pappaniolacou (Pap) smear or cervical lesions seen on visual inspection. Testing PAP DNA samples for the presence of high-risk (12) HPV subtypes to see their prevalence in the population. Evaluate promoter methylation status of HMLH1 & RARß2 genes to establish the association of epigenetic changes with pathologies of the cervix. **Materials and Methods** Organized screening programs were conducted in different rural and urban areas to identify women with abnormal PAP cytology. Complete information about the screening program was given to the women participants. Pap samples were collected along with the personal and medical history. **Results** Pap smears of 530 women were obtained via screening programs. 66% of cases were found to show an abnormal Pap cytology, mostly inflammatory smears. Upon exclusion of inflammatory smears, 32% were found to be abnormal smears. Of all abnormal cases 35.8%, 31.8% cases showed hMLH1 & RARß2 methylation respectively. Of the cases detected with presence of HPV, 14.1% showed HR-HPV subtypes. Of these 81.8%, 54.5% cases showed hMLH1 & RARß2 methylation respectively. **Conclusion** hMLH1 gene methylation seen in cases may be responsible for the genomic instability in these patients. RARß2 gene product inhibits transcription of viral oncogenes (E6 & E7) in HR-HPV immortalized cells. RARß2 promoter methylation, resulting in loss of expression, may affect this function, giving scope for viral oncogene transcription & carcinogenesis. hMLH1 methylation testing along with screening for HR-HPV subtypes could prove to be biomarkers for potential cancer risk in these patients. It is also important that the prevalence of specific HR-HPV subtypes has to determined in our population before we go ahead with administering the cervical vaccines.

P152

Exome sequencing of a selected gene panel in patients with Autism

Sireesha D, **Winnie T**, **Tejaswini Y**, **Om Sai Ramesh V**, **Nagaratna V**, **Vasavi M**, **Hasan Q**, **Ahuja Y**

1. Genetics Department, Vasavi Medical and Research Centre, Hyderabad; 2. Department of Genetics and Molecular Medicine, Kamineni Hospital, Hyderabad; 3. Molecular Diagnostics and Biomarkers, Global Hospitals, Hyderabad; 4. National Institute of Mentally Handicapped, Hyderabad.

Background ~1 in 88 individuals or 10 to 15/10,000 children are known to be autistic; while many researchers are working on the possible genes that affect autism, little is known about the role of these genes and their expressed proteins in brain dysfunction generating autistic phenotype. An alternative and effective approach to candidate gene analysis for association...
with disease risk is the exome-sequencing method. Targeted sequencing of a panel of genes based on data from current research, to detect variants associated with a spectrum disorder such as autism, represents a cost-effective approach, which will help identify and understand the role of causative mutations.

Aim & Objectives We have used the exome sequencing approach to identify risk variants that may contribute to etiology of autism in patients with and without a family history of autistic features.

Materials and methods Participants were recruited as part of the project designed to identify genes which may be related to the pathophysiology of autism. Here, we present analysis of exome seq reports from 10 subjects (5 female/5 male, average age = 12.1, SD = 4.01). DNA isolated from blood was used to perform exome capture using Agilent SureSelectXT Human All exon V5 kit.

Results Different gene mutations predicted to be damaging by SIFT and Polyphen tools were identified. These genes were involved brain development, survival and differentiation of dopaminergic neurons, abnormalities in serotonin levels etc. which are commonly related with autism. Only non-synonymous variants found in the sample were used for clinical interpretation.

Discussion In this presentation, we discuss the genetic variants that are associated with autism in patients with and without a family history. A combination of different gene mutations seems to be responsible for the varied symptoms seen in autistic patients. In such a scenario, targeted exome sequencing is the best approach to find pathogenic variants associated with disease. Targeting multiple genes by exome sequencing gives scope for personalized treatment; genetic counseling is mandatory for interpreting the possible consequences of the variants seen in the sequencing report.

P153

MMP9 polymorphism, prevalence and effect on cardiac iron overload in patients with beta thalassemia major.

Mable Misha Singh, Satyendra Tiwari, Kritanjali Singh, Abhinav Agarwal & Sarita Agarwal

Department of Medical Genetics, *Department of Cardiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow-226014,* 2Department of Pediatrics, PGIMER, Chandigarh-160012

Beta thalassemia patients have iron overload due to regular transfusions, which leads to left ventricular dysfunction. Left ventricular dysfunction (LVD) is a condition which reduces the ability of the ventricle to fill with or eject blood. The impaired ventricular function can be attributed to unfavorable ventricular remodeling. Among the pathways that contribute to remodeling process, matrix metalloproteinases (MMPs) appear to be of particular interest. The aim of the study was to evaluate the association of 1562 C>T variant with the echocardiographic features in beta thalassemia patients. One hundred and thirty beta thalassemia patients who were above ten years of age were selected for the study. DNA was extracted from blood samples in EDTA and genotyped for MMP9 1562 C>T variant by PCR-RFLP (Sp1 restriction enzyme) method. Out of these one hundred and thirty patients, thirty patients underwent echocardiography for the cardiac dysfunction. Mean age and height of thalassemia patients in the study were 14.3 years (±5.5) and 136.6 cm (±15.3) respectively. Genotype frequency of MMP9 1562 C>T variant among study subjects were CC, CT and TT were 54%, 42% and 3% respectively and allele frequency of C type was 75% and T type was 25%. Among the conventional echocardiography parameters LVEDD (mean of CC was 103.4 milliseconds and CT+TT was 148.8 milliseconds, p-value=0.023) and lv mass (mean of CC was 96413.04mg and CT+TT was 131477mg, p-value=0.046) were found to be associated with the MMP9 variant.

Conclusion: Present study shows that 1562 C>T variant of MMP9 is associated with susceptibility of the left ventricular dysfunctions may be due to iron overload.

P154

Are MTHFR and MTRR polymorphisms considered to be as risk factor in mothers of Down syndrome cases?

Ambreen Asim, Sarita Agarwal, Inusha Panigrahi, Aditya Kapoor

1Department of Genetics, 2Department of Cardiology, SGPGIMS Lucknow-226014, 3Department of Pediatrics, PGIMER, Chandigarh-160012

Background: Down syndrome, a trisomy of chromosome 21, is one of the commonest disorders, with huge medical and social burden integrated with high cost management. Maternal folic acid supplementation has been associated with a reduced risk for DS and the literature available proved the role of folate metabolism in preventing the risk factor for DS in high risk pregnancies. Most of the studies reported from India well documented the role of MTHFR gene polymorphism, however, MTRR gene, as a maternal risk factor for DS has not yet been studied.

Aims and objectives The present study aimed at evaluation of MTRR (C524T and A66G) along with MTHFR(C677T and A1298C) gene polymorphisms as maternal risk factors for DS.

Material and methods The genomic DNA was extracted and frequency of polymorphisms was evaluated in 45 mothers of clinically confirmed DS and 54 control mothers with normal children.

Results: The frequency of T,C,T and G allele of MTHFR C677T,MTHFR A1298,MTRR C524T and MTRR A66G polymorphisms respectively was found to be higher among mothers of case (23.33%,55.56%,33.3% and 52.22% respectively) compared to controls(12.96%, 3.33%,23.15% and 3.64% respectively). Genotype frequencies of CT and CC of MTHFR C677T and MTHFR A1298C respectively were higher among mothers of case than control (42.2% versus 25.9% and 22.2% versus 3% respectively) with odds ratio 4.76(95% CI 1.868-121.51;P value=0.033) and 20(3.282-121.84; P=0.0012) respectively. Genotype frequencies of CT and TT (MTRR C524T) and of GG (MTRR A66G) polymorphisms was found to be significantly higher among mothers of case than controls (64% versus 35.1%; 17.7% versus 5% and 95.5% versus 3%) with odds ratio 6.105(2.3216-16.0556; P value= 0.0002), 10(2.29-49.584;P value=0.0025) and 2.359(CI 0.0005-0.4965,P=0.0183) respectively.

Conclusions This study
clearly reveals the genetic association of folate metabolism genes MTRR along with MTHFR as maternal risk factors for having DS.

P155

TP- PCR: Advancement in Diagnosis of Fragile X Syndrome

_Gurvinder Singh_¹, _Rubina Sharma_¹, _AJS Bhanwer_², _Swarak Sharma_² and _Vipin K. Vig_³

¹Dept. of Human Genetics, Guru Nanak Dev University, Amritsar, ²School of Biotechnology, Shri Mata Vaishno Devi University, Katra, J&K, ³Dr. S.B. Sohan Singh Eye Hospital, Amritsar, Punjab.

_Fragile X Syndrome (FXS) is second most common types of inherited intellectual disorder. It is mostly caused due to hyper expansion and hypermethylation of CGG repeat within the first exon of FMR1 (Fragile X Mental Retardation) gene at Xq27.3 chromosome, thus silencing FMR1. FXS is characterized with mental retardation, behavioral impairment, and autism. Full mutation is less common but the carrier status is more widespread in the general population prevalence being 1 in 113–259 females and 1 in 260–810 males. Premutation expands to full mutation in subsequent generations. Present study aims to do molecular characterization of FMR1 gene in clinical suspects of FXS by using TP PCR technique. Family screening is offered to positive subjects to find individuals with high risk for expansion. Option of prenatal diagnosis is offered if required. Genomic DNA was extracted from 30 clinical suspects of FXS (both male and female). Bisulphite treated samples were subjected for methylation studies. TP- PCR amplicons were subjected to fragment analyses and results were documented. Out of 30, males (9) with full mutations and female (1) with premutation were detected. Family screening in the premutation female and in one of the full mutation male determined that both got premutation allele due to maternal transmission. Mother’s premutation allele has expanded to full mutation in the FXS male subject. _Conclusions_: Present study emphasized the need of TP PCR as reliable, rapid, and cost effective diagnostic method to be established, against negatively affirmation of PCR and traditional southern blot. Extended family screening could be offered to the FXS positive subjects along with supportive counselling and prenatal diagnosis options._

P156

Association Analysis of Various Anthropometric and Clinical Factors in Diabetic Retinopathy (DR) in Population of Punjab

_Gurvinder Singh_¹, _Rubina Sharma_¹, _AJS Bhanwer_², _Swarak Sharma_² and _Vipin K. Vig_³

¹Dept. of Human Genetics, Guru Nanak Dev University, Amritsar, ²School of Biotechnology, Shri Mata Vaishno Devi University, Katra, J&K, ³Dr. S.B. Sohan Singh Eye Hospital, Amritsar, Punjab.

_Diabetic retinopathy (DR) is one of the major microvascular complications of associated with both Type 1 diabetes (T1D) and Type-2 diabetes (T2D). The risk of developing DR depends on both the duration and the severity of hyperglycemia. Global prevalence of DR in patients with diabetes was recently estimated to be 34.6%. It is the leading cause of blindness worldwide. _Aim and Objective_: To find the correlation between various anthropometric and clinical factors in the progression of DR in the population of Punjab. _Material and Methods_: The present study investigates the association of clinical variables with DR. Total of 401 samples including 101 DR cases, 150 T2D and 150 unrelated healthy controls above the age of 50 years were enrolled in the present study. _Results_: Out of 101 cases, 44.34% DR cases were having non-proliferative diabetic retinopathy (NPDR) and 55.66% cases were having proliferative diabetic retinopathy (PDR). Anthropometric and clinical data analysis revealed that waist circumference (WC), hip circumference (HC), High-density Lipoproteins (HDL), Triglyceride and duration of diabetes were found to be significantly different among DR and T2D cases. When DR cases were compared with healthy controls HC, waist-hip ratio (WHR), Random blood sugar (RBS), cholesterol, HDL were found to be statistically significant. Principal component analysis extracted 4 variables [WC, Cholesterol, triglycerides (TG), and WHR] that explained 77.1% of cumulative variance suggesting obesity as a strong indicator of DR development. However, high loadings of TG and LDL cholesterol explained nearly 83.85% of variance indicating dyslipidemia as main risk factor in T2D progression. _Conclusion_: Obesity and dyslipidemia are strong indicators in the development of DR and T2D among population of Punjab._

P157

Fanconi Chromosomal Breakage Analysis Report of 98 Patients

Indhumathi N, Perumal G, Anitha S, Rama Mani

CMDL and Cytogenetics, Apollo Main Hospitals, Chennai, India.

Background: Fanconi Anemia is a rare genetic disorder of high phenotypic variability with diverse congenital anomalies, bone marrow failure; solid tumors and developmental abnormalities. Fanconi patients are hypersensitive to cross-linking agents and exhibit high frequency of chromosomal breakage. Thus, Mitomycin C or diepoxybutane were utilized for cytogenetic diagnosis of Fanconi. Occasionally, despite of strong suspicion of FA in patients, chromosomal breakage test can be negative because of somatic mosaicism. To date, 15 complementation groups and 16 fanconi associated genes have been identified. Complementary DNA testing helps to resolve such ambiguous cases. However, chromosomal instability analysis is the first line gold standard cost effective procedure with less turnaround time for fanconi diagnosis. _Aims and Objectives_: To report the observed frequency of Fanconi anemia from our referral centre. _Subjects and Methods_: Chromosomal Instability analysis was done on 98 patients referred to cytogenetics section between 2005 to 2011. The lymphocytes were Phytoheamagglutinin stimulated for 24 hours and further incubated with (20ng/ml) and without Mitomycin C for next 48 hours. In both patients and controls chromosomal breaks and radials were scored on 50 metaphases each with & without Mitomycin C. _Results_: Among 98 patients 35 revealed a high frequency of breaks & radials, 34.7%, this is very high compared to most of the respective frequency reports available from India. The affected male:
female ratio is 2:1 and mean age of the diagnosis is 9.2 and 5 respectively. Out of 3 familial cases 2 were positive for fanconi. Conclusions: With high frequency report of Fanconi 34.7% among index cases and considering the diversity, endogamy and consanguinity in Indian population - early diagnosis, early intervention, and screening for sibs by chromosomal instability assay is advised.

P158
Spectrum of Hemoglobinopathies in Santhal’s Tribal Community of Jamui District, Bihar
Rajendra Memorial Research Institute of Medical Sciences, Indian Council of Medical Research, Patna

Background: A few studies done earlier have reported the cases of hemoglobinopathies in Bihar. However, there is not much information on distribution of hemoglobinopathies in tribal population of Bihar. After Bihar partition, most of the tribal regions are located in the state of Jharkhand and according to census 2011, the scheduled tribe (ST) population in Bihar is 0.9% of total population of Bihar. Aim and Objectives: To determine the spectrum of hemoglobinopathies in the tribal population of jamui district, specifically in santhal’s tribes because santhal’s tribal community is the most populous, out of the total reported 28 schedule tribe’s population. Material and Methods: A community based pilot study was conducted at Khaira and Sono block of Jamui district. A total of 153 santal tribe’s, age >14 of both gender were screened for hemoglobinopathies using hemoglobin testing system (VARIANT β-Thalassemia short program, Bio-Rad laboratories, California, USA) after taking written informed consent. Value Hb A2 < 3.5 % and HbF < 1% were considered as normal, which were provided by manufacturer. Result: Out of 153 Santhal’s, 143 (93.5%) were normal, 5 (3.3%) had β- Thalassemia Trait, 4 (2.6%) had HbS trait and 1 (0.6) had HbE trait. Conclusion: The present study provides the status of hemoglobinopathies in this region of Bihar. On screening using HPLC (VARIANT β-Thalassemia short program), about 6.54% of of tribal population had hemoglobinopathies. In this prospective, we emphasize that a large population based study and molecular analysis needs to be done, to further evaluate the status of hemoglobinopthies in tribal and non-tribal people of Bihar to prevent thalassemia major in coming generations.

P159
Study of Risk Factors in Oral Carcinoma and the relationship between Tumor Thickness and Regional Nodal Involvement
Sujata Jetley, Zeeba Jairajpuria, Sama Rizvi
Hamdard Institute of Medical Sciences and Research (HIMSR) Mehrauil Badarpur Road, Hamdard Nagar, New Delhi, Delhi 110062

Background: Oral cancer is a subtype of head & neck cancer which most commonly involves the tongue but may also occur on the floor of the mouth, gingiva, lip and palate. It is now accepted that thickness is a more accurate predictor of nodal metastasis, local recurrence, and survival than tumor size/diameter. Aims and Objectives: To correlate tumor thickness with nodal metastasis in all the cases. To also record the clinical T-stage, pathological T-stage, vascular invasion, and perineural infiltration and to establish a correlation, if any with tumor thickness. Material and Methods: This was a retrospective as well as a prospective study. A total of 25 cases of oral carcinoma with radical neck dissection were evaluated. Histologically proven cases of oral carcinoma which had already undergone radical surgery were included in this study. Results: Most of the patients in this study were young adults who had a long term history of tobacco usage in its various forms. A detailed history was obtained from these patients regarding the type of tobacco used & the duration of usage. We found that the tongue was the most common site of oral carcinoma involvement (7 cases) in cases of smokeless tobacco usage whereas the retromolar trigone area, gingivo-buccal sulcus and buccal mucosa were more or less equally involved in those cases who were tobacco smokers. Table I depicts the distribution of cases according to site of the oral carcinoma lesion and type of tobacco abuse among these 25 patients. Conclusion: Tobacco addiction, either as a smoking habit or the chewing of smokeless tobacco over a long period of time was associated with the development of Oral Carcinoma. The buccal mucosa, gingivo-buccal sulcus & the retromolar trigone were the common sites of development of squamous carcinoma among the smokers. The tumor thickness of Oral Squamous Cell Carcinoma was found to be an important prognostic indicator for the occurrence of metastases to the regional cervical lymph nodes. In this study of 25 cases, a tumor thickness of 0.6 cm or more was found to be significantly associated with regional lymph involvement by the oral squamous cell carcinoma.

P160
Genetic Diversity in Reasi and Udhampur Districts of Jammu and Kashmir, India.
Indu Sharma, Varun Sharma, Ekta Rai, Vinod Singh, Swarup Sharma
Shri Mata Vaishno Devi University, Katra, J&K, India

Indian subcontinent has special position in human evolutionary history due to populations’ divergence, many migrations, and cultural evolution since the first emigration of man “Out of Africa” (Wells et al., 2001). India has served as a major corridor in the dispersal of modern humans as it is positioned at the tri junction of Africa, Northern Eurasia and oriental realms (Cann, 2001). It is agglomerated with 4635 anthropologically well defined populations having 532 tribes, 72 primitive tribes (36 hunters and gatherers) (Tamang et al. 2012). Majority of non-tribal population belongs to the Hindu religion. Several other religious communities contribute a fraction of Indian population. Jammu and Kashmir state of India possess an excellent geographical location in the Himalayan region, divided into three regions Jammu (having 65% of Hindus, 31% of Muslims and 4% Sikhs), Kashmir (97% are the Muslims and rest belongs to other communities) and Ladak (46% Buddhists, 47% Muslims and 6% Hindus). The population is highly endogamous and have various sub-endogamous groups. Further, Reasi and
Udampur are adjacent districts of Jammu division, represent very interesting location and mountain ranges in the regions that separate Jammu and Kashmir divisions. Both the districts encompass pleasant valleys as well as extremely difficult terrains to inhabit and might have acted as doorways to Central Asia from Indian Subcontinent plains. These districts have various Hindu and Muslim ethnic groups -Rajput, Brahmin, Mahajan, Khaytriya Gujjar, Bakarwal and the tribes: Watal, Chura, Saryara, Megh, Ratal, Kabirpanti, Jolaha, Dumna, Doom, Dhyr, Balmiki, Bangi, Gardi, Ramdasia, Batwal, Basith, Banwala etc. We have undertaken a research project to exploit Y chromosomal and mtDNA markers to understand the origin and ancestral history of ethnically diverse contemporary population groups of Reasi and Udampur districts, to workout genetic relationship among themselves and explore their relationship with rest of the studied Indian and world population groups. It is anticipated that this study will shed light on various perspectives of human migration history. We may come across some untold evolutionary history stories and most likely shall discover some novel maternal and paternal lineages, isolated and restricted to these regions.

161P
Detection and Evaluation of BCR/ABL Gene mutations in CML Patients Treated with Imatinib Mesylate
Zaker F.*,1, Chahardouli B.1, Mousavi SA1, Ostadali MR.2,3, Nadeali F.2
1Cellular and Molecular Research Center, Department of Hematology, School of Allied Medical Sciences, Iran University of Medical Sciences, 2Department of Hematology, School of Allied Medical Sciences, Tehran University of Medical Sciences, 3Department of Blood and BMT, School of Medical Sciences, Tehran University of Medical Sciences, Tehran-Iran

Background: Chronic myeloid leukemia (CML) is associated with a characteristic chromosomal translocation called the Philadelphia chromosome (Ph). This abnormally is the result of a reciprocal translocation between the long arms of chromosomes 9 and 22, which generates the BCR-ABL fusion oncogene. The BCR-ABL p210 fusion protein is found in more than 95% of patients with CML. This oncoprotein is an activated tyrosine kinase stimulating several pathways transducing intercellular signals leading to abnormal cellular functions. The first generation of tyrosine kinase inhibitors called Imatinib mesylate was approved by FDA for treatment of CML patients. Unfortunately, BCR-ABL tyrosine kinase domain (TKD) mutations are the most important factor contributing to imatinib-resistance and poor prognosis in CML in all phases. In this study we evaluated mutation analysis and clinical findings of TKD mutations in patients with CML.

Material and Methods: We have used European Leukaemia Net (ELN) guideline for diagnosis and management of CML patients. It has been used a semi-nested RT-PCR followed by bi directional sequencing to detect mutations in a cohort of 166 Iranian CML patients. Molecular response was evaluated through quantitative assessment of BCR-ABL fusion gene expression by real-time RT-PCR (Reverse transcriptase polymerase chain reaction). Participants were grouped into three categories: those with imatinib resistance or suboptimal response (n=110), those with showing favorable response (n=26), and those diagnosed before introduction of imatinib (n=30). This study was approved by the ethical committee of Iran University of Medical Sciences. Results: In total, 34 mutations in 19 distinct codons were identified in 32 patients of the first group, of which two were novel. The most frequent mutations were G250E (x5), followed by T315I (x4) mutations, M244V and F359C (X3 each) mutations, and mutations of E255K, M351T, F359V and E459G (2x each). Two imatinib-resistant mutations involving D276N and E279A were identified for the first time in this study. The most commonly mutated region was drug binding site (29%) followed by p-loop region (26%) and C-terminal (13%). The frequency of mutations in chronic phase (CP), accelerated phase (AP) and blastic phase (BP) were 23%, 75% and 62% respectively. Conclusion: Approximately, 30% of imatinib-resistant patients demonstrated mutations with high frequency of G250E and T315I. This report expands the spectrum of ABL mutations and stresses the use of mutation testing in imatinib-resistant patients for continuation of treatment procedure and selection of second-generation tyrosine kinase inhibitors or bone marrow transplantation.

P162
Clinical and Molecular Study of NPC in Iran: Report of 5 Novel mMutations
Amirabbas Parizadeh1, Seyed Hassan Tonekaboni2, Omid Aryani3, Parvaneh Karim Zadeh,4, Taleieh Zaman,5 Mahmood Reza Ashrafi,6 Shadab Salehpour7, Masoumeh Dehghan Manshadi7,8, Elham Khalili7, Massoud Houshmard6
1Department of Sciences, East Azerbaijan Science and Research Branch, Islamic Azad University, Tabriz, Iran, 2Mofid Hospital, Shahid Beheshti University of Medical Sciences, 3Special Medical Center, 4Medical School of Tehran University, 5National Institute for Genetic Engineering and Biotechnology, Tehran, Iran

Niemann–Pick disease type C (NPC) is a rare autosomal, recessive, neurovisceral disorder caused by mutations in the NPC1 (95%) or NPC2 (5%) genes. RT-PCR and sequencing methods were used for molecular investigation for NPC1 and NPC2 genes in 5 patients. Case I: 15 years old boy who had hepatosplenomegaly and jaundice in neonatal period. Liver biopsy at that time was compatible with a lipid storage disease. (c.1069C>T) p.S357L was found. Case II: 3.5 years old boy, splenomegaly was detected at 6 month of age. He had psychomotor developmental delay. (c.1180C>T) p.Y394H Case III.: Two sister, aged 13,17 years old ,product of consanguineous marriage;13 years old sister was presented with chief complaint of progressive ataxia and dysarthria since 9 years of age. Since 11 years of age progressive dysphagia started but now dysphagia is in a plateau state. Cognitive state remains unchanged. She has no seizure nor gelastic cataplexia. (c.1433A>C) p.N478T Case IV: 13-year-old boy, who presented primarily with neurologic symptoms. He started to develop ataxia and dysarthria at the age of eight years. Dementia, dysphagia, d and seizures, in that sequence, followed within a couple of years. He was anarthric and
Bedridden four years after onset. \((c.1192C>T) \) p.H398Y]. All of the mutations were software analyzed and were missense mutations.

P163

Identification of Genetic Loci for Uric Acid in North Indians using Genome Wide Association Study

Aarthi Ravindran, Priyanka Banerjee, Anil K Giri, Dwaipayan Bharadwaj

1CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Near Sukhdev Vihar, New Delhi-110025

Background: Serum uric acid (SUA) levels has been associated as a risk factor for multiple complex diseases like gout, hypertension and renal diseases. Understanding the control of uric acid homeostasis may help to improve patient’s conditions with hyperuricemia and other related complications. Hence it is necessary to understand the genetic factors controlling SUA level in different population. Aims and objectives: Current study aims to identify genetic variants associated with uric acid level using GWAS in North Indians of Indo-European ethnicity. Material and Methods: Discovery phase of GWAS was performed in 2,280 individuals. Genotype information of 5,39,662 single nucleotide polymorphisms (SNPs) was analyzed to establish the association with serum uric acid level. SNPs with p-value <10\(^{-4}\) were replicated among 5,000 different individuals in the second phase of study. We also analyzed the variance in uric acid levels explained by SNPs using GCTA. Results: The analysis of first phase GWAS data identified novel genetic loci in 34 genes significantly associated with serum uric acid levels among North Indians. We replicated genetic variants in SLC2A9 and ABCG2 gene that has been previously shown to be associated with uric acid in other population. We further observed that based on genetic information of all the SNPs used in the present study, 7% of variance in uric acid levels can be explained in North Indian population that is in good agreement with earlier published results in Europeans, where 7.7% of the variance was reported. However, SNPs with significance level <10\(^{-4}\), explained only 2% of the variance in uric acid level among North Indians. Conclusion: This study will help in identifying novel genetic markers associated with serum uric acid and will provide new insights into the genetics of uric acid homeostasis.

P164

Role of Fumarate Hydratase Gene Mutation in the Etiology of Uterine Fibroids

Ch. Bharathi\(^1\), Pratibha Nallari\(^2\), A. Jyothy\(^3\), Aruna Ramaiah\(^3\) and A. Venkateshwar\(^3\)

\(^1\)Institute of Genetics and Hospital for Genetic Diseases, Osmania University, Begumpet, Hyderabad, Andhra Pradesh, India; \(^2\)Dept of Genetics, Osmania University Hyderabad, Andhra Pradesh, India; \(^3\)Dept. of Gynaecology, Government Modern Maternity Hospital, Hyderabad, Andhra Pradesh, India

Background: Uterine leiomyomas or fibroids are the most frequent solid pelvic tumors in female genital tract. It is estimated that one in four women during reproductive period develop this kind of benign neoplasia. Fumarate hydratase (FH) has been shown to play a crucial role as a tumor suppressor with its lowered activity in tumors. The FH gene is localized on 1q42.3–43 with ten exons that encodes for fumarate hydratase which catalyzes conversion of fumarate to malate in TCA cycle. So far, twenty different mutations in the FH gene were identified which are associated with uterine fibroids. Aims and Objectives: The aim of the present study is to determine the role of FH (exon1) mutations with uterine fibroids in South Indian population from Andhra Pradesh. The objective of the study is to identify the mutations associated with disease phenotype. Material and Methods: A case-control study was conducted with a total of 40 clinically, ultrasonographically confirmed uterine fibroid patients and 50 healthy women without the history of any gynec problems were included in the present study. Demographic details and blood samples were collected from all the subjects along with written informed consent. DNA was extracted by standard Sucrose method and analyzed for FH gene (exon 1) mutation by PCR-amplification followed by single stranded conformation polymorphism. Results: The demographical features like, age p value=0.031 OR (CI) = 2.84(1.18-6.82), BMI p value=0.003 OR (CI) = 0.16 (0.04-0.54) revealed a significant difference between the two groups. The results obtained in the study showed similar band pattern in all the control and patient samples analyzed so far. Conclusion: The study revealed no band variation in the control subjects and patients with uterine leiomyoma. However, large number of samples and the remaining exonic regions of the FH gene have to be analyzed to confirm the results.
Drosophila represents an attractive model system to understand classical as well as molecular genetics and genomics and more than 70% genome similarities with human make it a popular human disease model. Drosophila contributes immensely in understanding the function of various genes and their possible structural and functional variation through time and space by comparative genomics studies among different species. Recent studies have found introns as regulatory component of gene-expression rather than junk DNA and play a major role in expressing multiple proteins from a single gene. Therefore, to understand the gene and protein evolution, study of both exons and introns in term of their size, position, number and GC content is equally important. There are earlier reports about the exon and intron size variation across eukaryotic genomes at inter-species level, however, it is still under debate.

Aims & Objectives: The primary objective of this study aims at the pattern of variation in exon‑intron architecture across the genome (autosomes and X-chromosome) of various Dipteran species and their possible structural and functional variation.

Materials and methods: A total of 100 individuals with beta thalassemia major and intermedia were included for analysis. Genotyping was done by PCR-RFLP method. And statistical analysis was done for association between clinical severity and genotypes. Results: 40% of the beta thalassemia patients were found to be heterozygote for Xmn1 polymorphism, 27% were carriers for MTHFR (C677T) polymorphism. There was high frequency of ACE (DD) genotype in the cohort of beta thalassemia patients. Conclusion: The subjects with Xmn1, MTHFR(C677T) and ACE(I/D)polymorphisms have been evaluated with beta thal disease severity and found that they are important biomarkers.

P166
Variation in Exon-Intron Architecture of Autosomal and X-linked Genes in Dipteran Species

Shagun Shukla, Radhika Khanna, Grishma Chandrabose, Diksha Srivastava, Sujata Mohanty

Department of Biotechnology, Jaypee Institute of Information Technology, Uttar Pradesh – 201307

Background: Drosophila represents an attractive model system to understand classical as well as molecular genetics and genomics and more than 70% genome similarities with human make it a popular human disease model. Drosophila contributes immensely in understanding the function of various genes and their possible structural and functional variation through time and space by comparative genomics studies among different species. Recent studies have found introns as regulatory component of gene-expression rather than junk DNA and play a major role in expressing multiple proteins from a single gene. Therefore, to understand the gene and protein evolution, study of both exons and introns in term of their size, position, number and GC content is equally important. There are earlier reports about the exon and intron size variation across eukaryotic genomes at inter-species level, however, it is still under debate.

Aims & Objectives: The primary objective of this study aims at the pattern of variation in exon‑intron architecture across the genome (autosomes and X-chromosome) of various Dipteran species and their possible reasons.

Material and Methods: The chromosomal map of autosomes and X-chromosomes of studied species were accessed from Fly base. Total number of genes present were ascertained using the Map Viewer, NCBI database (http://www.ncbi.nlm.nih.gov). The chromosomes were divided according to their high and low recombination region and equal number of genes were randomly selected from each division/group. The details of the genes included in this study e.g. ID, locus, length and functions were retrieved from NCBI and Fly base databases. The number of exons and introns present in each gene were analysed using the computational tool Genscan.

Results: The results clearly show that a strong relationship exists between the intron size variations with respect to high/low recombination region along X-chromosome. However, no such relation is observed in case of exons of X-linked genes. In addition, differential pattern of variations is observed in exon-intron architecture of autosomes and X-chromosomes in Drosophila as well as in its closely related species. Conclusion: The overall findings of this study may provide some clue to understand the gene/protein evolution and the underlying mechanism in higher eukaryotes including human.

P167
Association of Apolipoprotein E, A5 And Endothelial Nitric Oxide Synthase Gene Polymorphisms in Myocardial Infarction: A Hospital Based Study in North East India

Sukanya Baruah1, Mriganka Sekhar Chaliah2, Prasanta K Borah1 and Jagadish Mahanta1

1Regional Medical research Centre NE Region (ICMR), 2Assam Medical College

Background: Apolipoprotien E, Apolipoprotien A5 and Endothelial nitric oxide synthase (eNOS) gene plays a crucial role in regulation of vascular tone and vaso-relaxation in cardio vascular homeostasis through cholesterol and triglyceride metabolism. However, genetic polymorphism controlling these proteins have not been fully explored. We studied genetic polymorphism of ApoE, ApoA5 and eNOS gene and their association with Myocardial Infarction (MI) in a population of North East India.

Aims & Objectives: To find the association of ApolipoprotienE, ApolipoprotienA5 and Endothelial nitric oxide synthase (eNOS) gene polymorphism with MI.

Methods: A hospital based case-control study in 400 homogenous volunteers (200 cases and 200 matched controls) was conducted. Gene polymorphisms were determined by polymerase chain reaction based methods.

Results: Significant association was observed for eNOSa (OR=4.49; p=0.001), T-786C rs2070744C allele with MI (OR=2.11; p=0.02). Besides these gene polymorphisms, risk of MI significantly increases with hypertension (OR= 2.96; p=0.001), hypercholesterolemia (OR= 3.31; p=0.002) and smoking (OR=4.22; p=0.001). We have also observed that the individuals carrying Apo E3/E4 genotype significantly increase the risk of MI (p=0.002)

Conclusions: Subjects carrying Apo E3/E4 genotype, eNOS4a and rs2070744C allele with MI has higher risk for development of MI in addition to conventional risk factors including smoking, hypertension and dyslipidemia. Further the impact of these alleles seems to be the highest among the middle aged individual (41 years to 50 years).

P168
Non-Familial Sporadic Heritable Retinoblastoma and it’s Correlation with Paternal Sperm DNA Damage

Shilpa B1, Surabhi G1, Shiv B K1, Bhavna C1, Rima D1

1Laboratory for Molecular Reproduction and Genetics, Department of Anatomy, 2Retinoblastoma Clinic, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi

Background: Poor sperm DNA quality observed by raised DNA Fragmentation Index (DFI) may be the common etiological factor in infertility, recurrent spontaneous abortions, congenital malformations and cancers. Unlike oocyte, male germ cells divide continuously and therefore a source of new mutations. Sperm is highly vulnerable to oxidative damage to both nuclear
Aims and Objectives: Retinoblastoma (RB) is the most common childhood intraocular malignancy but the causative factors are not known. This study was planned with an aim to analyze the sperm DNA quality by DFI calculation in fathers of children with non-familial sporadic heritable RB. Material and Methods: PCR was conducted to exclude cases where parents of RB patients were positive for RB1 mutations. 20 fathers of children with sporadic RB and 15 controls i.e. fathers of healthy children were enrolled. Semen & blood samples were collected and analyzed in accordance with WHO 1999 guidelines. DFI by Sperm Chromatin Structural Assay, Reactive oxygen species (ROS) by Chemiluminescence Assay and 8-OHdG by ELISA were calculated.

Results: Mean ages of cases and controls were 33.17±11.2 yrs and 28.5±4.54 yrs respectively. Semen analysis of cases and controls showed no remarkable differences. Seminal mean ROS levels were significantly higher [45.78±38.4 vs 22.75±8.18 RLU/s/million; p=0.0143] in cases as compared to controls. The 8-OHdG levels were significantly higher in cases [72.5(12.8-631.1) vs. 32.7(5.6-89) pg/mL; p=0.006] compared to controls. Mean DFI levels were higher in cases as compared to controls [29.31±5.8 vs 23.27±11.22; p=0.156] but were not significant. Conclusion: This study suggests the role of supra-physiological ROS levels in oxidative DNA damage. The results show that paternal sperm DNA damage may be a cause of childhood retinoblastoma and paternal factors may play a critical role in embryonic development.

P170
Amyotrophic Lateral Sclerosis (ALS) – An Overview
Varun Sharma1, Indu Sharma1, Ekta Rai1, Vinod Singh1, Kamal Kishore Pandita1, Swarkar Sharma1
1Shri Mata Vaishno Devi University, Katra, J&K, India, 2Acharya Shri Chander College of Medical Sciences, Jammu, J&K, India

Amyotrophic lateral sclerosis (ALS) is a progressive, fatal neuromuscular disease involving both upper and lower motor neurons. The causes of ALS (also known as Lou Gehrig’s disease) are not fully understood. For the vast majority of people with ALS, the mind and senses remain intact and unaffected. Clinical symptoms include muscle weakness, atrophy; twitching and cramping of muscles, impairment of the use of the arms and legs, difficulty in projecting the voice; and in more advanced stages, shortness of breath and difficulty in breathing and swallowing (ALS Association 2000). However, its symptoms make it difficult to distinguish from other muscular atrophies and related forms of the disease, particularly for epidemiological studies (Roman 1996). Most people who develop ALS are of the age groups of 40 and 75, with the majority after age of 60. The disease is relatively rare and occurs throughout the world with no obvious racial, ethnic or socioeconomic boundaries. According to the Amyotrophic Lateral Sclerosis online genetic database, there has been 117 genes reported till date which are responsible for the ALS. In a report of U.S. Library of Medicines genes like c9orf72, SOD1, TARDBP, FUS, ALS2 are 30-40% responsible for the FALS in USA and other European countries and contribute to the development of the sporadic ALS (SALS) and 20% worldwide. Among all of the genes responsible for the ALS, SOD1 has the highest frequency of mutations and the patients diagnosed with ALS shows the highest frequency with the same. The whole data whether it is about genes, prevalence, factors responsible for ALS in European and Western countries are available in databases like ALSOD (ALS online genetic database). However, such information is scanty in India to differentiate the ALS from various others motor neuron disorders due to lack of appropriate clinical resources. It is important to carry out various clinical and genetic studies with respect to the disorder and
design a database, which contains all this information about ALS in India. Such databases will help Indian researchers to find the ascertain epidemiology of disease and helps them to differentiate the ALS from other neuro degenerative disease which mimics like ALS.

P171

Genetic and Environmental factors predisposing to Depression and Suicidal behaviour in Idu Mishmi Tribe of Arunachal Pradesh.

Piyoosh Kumar Singh¹, Shivani Pasi³, Shweta Saha⁴, Mamta Jinn⁵, V. R. Rao⁶

¹Department of Anthropology, University of Delhi, Delhi-110007

Background-Complex association of suicidal behavior and depression in suicidal patients has been observed and it may be independent of the risk of suicide associated to depressive disorders. Heterogeneity and hereditary complexity of suicidal behaviour make it more composite and need of demonstrable intermediate phenotypes have been advised. **Aim and Objective**- Objective of the study is to find the candidate endo-phenotypes of suicidal behavior and role of risk gene polymorphisms in it. **Method**- Suicidal behaviour was assessed using Columbia suicide severity rating scale, PHQ-9 and open ended questions in Idu Mishmi tribe of Arunachal Pradesh, India. Depression diagnosis was done using Patient Health Questionnaire-9 (PHQ-9) whereas trait of Impulsivity, Aggression and risk genetic markers (5-HTTLPR and sin2, BDNF, COMT) were evaluated to know the diathesis status among Tribesmen’s and women whereas Alcoholism, social support and food pattern were recorded to see them as possible risk factors. T-test, correlation regression were performed as statistical methods to know the significance of the risk factors in suicidal Behaviour. **Result**- Rate of suicide ideation and attempt were recorded high as indicator of Suicidal behaviour in Idu stock of Mishmi Tribe. Aggression, Impulsivity score were also found high in persons with suicidal behaviour compared to non suicidal persons. Genetic analysis of serotonin transporter gene (5-HTTLPR) shows the high frequency of 5-HTTLPR, SS allele and sin2, 12 allele in the Idu Mishmi Population. **Conclusion**- Complex association of genetic and environmental risk factor found to play a role in the development of depression leading to suicidal behavior among Idu Mishmi tribe.

P172

Molecular characterization of tetherin/BST-2 gene promoter in Indian HIV infected long term non progressors

¹Dhanashree D. Jagtap, ²Divyambari S. Gupte, ³Madhuri R. Thakar, ⁴Hari Om Singh, ⁵Sudhanshu Pandey, ⁶Selvaa Kumar C, ⁷Ramesh S. Paranjape

¹HIV PCR Laboratory, ²Department of Immunology, ³Department of Molecular Biology, ⁴HIV Drug Resistance Laboratory, National AIDS Research Institute, Pune- 411026, India; ⁵Department of Bioinformatics, School of Biotechnology & Bioinformatics, D. Y. Patil University, Navi Mumbai- 400614, India.

Corresponding author, E-mail: djagtap@nariindia.org

Background: Tetherin/BST-2 is a recently identified host restriction factor which tethers newly formed HIV-1 virions to the surface of HIV infected cells and prevents HIV egress and further infection. Long term non progressors (LTNPs) are rare unique individuals who are infected with HIV but control the infection without antiretroviral therapy (ART). It is not known whether polymorphisms of tetherin/BST-2 are associated with natural control of HIV-1 infection. Till date, no variations in tetherin/BST-2 gene have been reported in Indian HIV positive individuals. **Aim**: The aim of this exploratory study is to characterize tetherin/BST-2 gene promoter in Indian HIV infected LTNPs. **Methods**: Three groups of patients; 34 HIV infected LTNPs with CD4 counts >500 cells/ cumm, 17 clinical progressors with CD4 counts <200 cells/cumm, and 77 healthy controls were selected for study. DNA was extracted from PBMCs followed by BST-2 promoter amplification, sequencing and docking studies of AP2 repressor protein against BST-2 promoter. **Results**: BST-2 promoter was found to be highly polymorphic. Three novel insertions namely -17 Ins CTTCAGC, -203 Ins A and -443 Ins CGCCCCCAAGACCCAGGCC were found in Indian population. Four novel substitutions at positions -58 G>A, -236 G>A, -260 G/A, -268 C>T and three reported substitutions at positions -245C>T, -305A>G and -380 G>A were also found to be present. -443 Ins was present in 12% HIV clinical progressors and 9% controls while this insertion was absent in LTNPs. Bioinformatic analysis through protein-DNA interaction showed lower AP2 repressor binding affinity in LTNPs. **Conclusion**: -443 Ins corresponds to additional AP2 repressor binding site in BST-2 promoter. Absence of -443 Ins in LTNPs indicates that BST-2 expression might be one of the contributory factors for slow disease progression in LTNPs. This is first genomic study on HIV infected LTNPs from India which highlights importance of BST-2 gene in control of HIV infection.

P173

Epidemiology of Inbreeding Depression on Physical, Reproductive and Cognitive Behavior

Mehd Fareed, Malik A Anwar, Mohammad Afzal.

Human Genetics and Toxicology Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India

Background: Inbreeding increases the level of homozygotes for autosomal recessive genetic disorders and generally leads to decline in fitness of a population known as inbreeding depression which provides a major focus for clinical studies. **Aims and Objectives**: We aimed to estimate the effect of inbreeding on physical, reproductive and cognitive behaviors among different populations of Jammu region. **Material and Methods**: The physical parameters (n = 1270, aged 5-15 years) were categorized into height, weight and body mass index (BMI) and the BMI categories were employed as adapted by World Health Organization (WHO). The Wechsler Intelligence Scales for Children (WISC) was used to measure cognitive behavior (n = 408, aged 6-15 years) domains: the verbal IQ (VIQ), performance IQ (PIQ) and full scale IQ (FSIQ). Reproductive behavior of the mothers (n = 999, grouped 25-45 and 46-65 years of age) were based on fertility, mortality,
secondary sex ratio and selection intensity. Family pedigrees were drawn to access the family history and children’s inbred status in terms of coefficient of inbreeding (F). Results: We found significant decline in children’s cognitive abilities due to inbreeding and high frequency of mental retardation among offspring from inbred families (p<0.001). Children of inbred families showed decline in mean value for height, weight and BMI (p<0.0001). The frequency of underweight children was found higher among inbred (<18.5 kg/m² = 47.31%) category as compared to non-inbred ones (<18.5 kg/m² = 13.41%) and subsequent depression was found among the inbred children due to increase of inbreeding coefficient. We found significant difference in selection intensity, secondary sex ratio and mortality. The total mortality among inbred was higher (10.93%) than non-inbred (7.48%) families, while fertility parameters remained unaffected. Conclusion: Our comprehensive assessment provides the evidence for inbreeding depression on physical, reproductive and cognitive behaviors in comparison with different environmental factors.

P174
Demographic and Clinical Profile of Dilated Cardiomyopathy Patients from North India
Soumi Das1, Amitabh Biswas2, Mitali Kapoor3, Sandeep Seth4, Balram Bhargava5, Vadlamudi Rao6
1Department of Anthropology, University of Delhi, Delhi, India; 2Department of Cardiology, AIIMS, India

Background: Dilated Cardiomyopathy is a disease of the heart muscle, primarily affecting the left ventricle. It is a disorder involving a heterogeneous group of cardiac muscle and is characterized by ventricular dilatation, impaired systolic function, reduced myocardial contractility and with a left ventricular ejection fraction of less than 40%. Of all the various cardiomyopathies, DCM is two to threefold more common cause of heart failure. Some studies suggest that 30 to 35% of idiopathic DCM may have familial history. Method: 74 idiopathic DCM patients were recruited from Department of Cardiology, AIIMS. Written consent was taken from all the patients along with their family members for clinical screening (ECG and echocardiography). The inclusion criteria for the patients was Left ventricular ejection fraction (LVEF) <40% and absence of pre-cancer as a potential biomarker of disease progression, may act as a biomarker for lesions progressing to cancer. Aims and Objectives: We conducted a review of studies to summarize current evidence on DNA methylation in oral pre-cancer as a potential biomarker of disease progression, and to ascertain knowledge gaps to inform future research. Methods: We identified all relevant studies till date using combined key search against PubMed, Web-of-Science and Embase databases. Inclusion criteria were studies of human subjects that examined DNA methylation in oral pre-cancer published in English language peer-reviewed
journals. **Results:** Twenty studies on DNA methylation in oral pre-cancer (3 cohort; 6 case-control; 11 cross-sectional) were reviewed; one-third of these were conducted in India. Sample sizes ranged from 4 to 284 affected cases. Nineteen studies examined promoter regions of tumor suppressor genes primarily involved in cell cycle control (n=15 studies), DNA repair (n=8 studies) and apoptotic pathways (n=4 studies), and reported hyper-methylated frequencies. The hypermethylation of commonly examined genes varied among cases (p16=17.5-87.5%, MGMT=4-72.7% and DAPK=0-35.3%). Two cohort studies observed a greater proportion of p16 hyper-methylation in lesions transforming to malignancy compared to lesions that regressed (57-63.6% vs. 8-32.1%; p<0.01). Study that explored genome-wide methylation patterns reported three novel frequently hyper-methylated genes (TRHD;ZNF454;KCNA3B). Major limitations were small sample sizes for detecting associations, poor definition of controls and cross-sectional studies that could not track longitudinal changes. Strengths included use of biopsy-confirmed samples and standard and validated analytical methods for methylation patterns. **Conclusion:** Although evidence is inconclusive, emerging data suggest that methylation patterns may be a marker in early oral carcinogenesis, and future genome wide methylation studies can help identify ‘driver’ loci of disease progression to guide early diagnosis at critical windows.

P177
Genomics of Chronic Obstructive Pulmonary Disease and Lung Function: A Review

Asthaj Ranjan1, Gagandeep Kaur Walia2, Vinip Gupta3

1Department of Anthropology, University of Delhi, Delhi, India, 2Public Health Foundation of India, New Delhi, India

Background: Chronic Obstructive Pulmonary Disease (COPD) is characterized by irreversible airflow obstruction and measured through lung function. As per GOLD guidelines 2013, forced expiratory volume in one second (FEV1) and the ratio of FEV1 to forced vital capacity (FEV1/FVC) are two important diagnostic measures of COPD. Genome-wide association studies (GWASs) in last five years have identified several genetic variants related to lung function and COPD in European populations. These polymorphisms need to be validated in different population groups to establish universal biomarkers influencing lung function and COPD. **Aim and Objective:** The present review aims to gather current information related to genetic variants associated with COPD and lung function identified through GWASs along with their validation in different population groups. **Material and Methods:** All GWASs and their related meta-analyses, Indian candidate and validation studies available at PubMed (10th December, 2014) were reviewed. **Results:** This review article identifies significant association of a total of 40 loci: CHRNA3/5, HHIIP, GPR126, ADAM19, AGER, INTS12-GSTCD-NPNT, HTR4, THSD4, FMA13A, IRE2B, Chromosome 10 (SNP rs10761571 and rs7896712), Chromosome 14 (SNP rs1214725), CDH2, MYBPC1, CTNNA3, DNER, HLA-DQB1, HLA-DQA2, KCNJ2, SOX9, GSTM1, XRCC, CYP2A6, SERPINA1, IL37, ASXL3, C10or11, IL16/STARD5/TMC3, ME3, ADCY2, TGF-β1, CDC97, CRP, MFAP2, RARB, CDC123, MMP15, RAB4B, EGLN2, DBH with COPD and Lung function at or near genome-wide significant level (P<10−8) in different population groups. **Conclusion:** The findings of GWASs provides biological information on normal physiology of lung function and COPD pathogenesis. The validation of GWAS loci is important for countries like India which has unaddressed and high epidemiological burden of COPD.

P178
Family History of Cancer and Risk of Squamous Cell Carcinoma of Esophagus - An Outcome of a Case Control Study

Nazir Ahmad Dar1, Gulzar Ahmad Bhat2, Idrees Ayoub Shah1, Rumaisa Rafiq3, Sumayya Nabi1, Mohd Maqbool Lone2, Farhad Islam3, Paolo Boffetta4

1Department of Biochemistry, University of Kashmir, Srinagar, J&K; India 190006. 2Departments of Radiation Oncology, SK Institute of Medical Sciences, Sora, Srinagar, 190011 India. 3Surveillance and Health Services Research, American Cancer Society, Atlanta, USA. 4Digestive Disease Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, 14117 Iran. 5The Tisch Cancer Institute and Institute for Transitional Epidemiology, Mount Sinai School of Medicine, New York, USA.

Background: A number of environmental factors are associated with esophageal squamous cell carcinoma (ESCC) risk, however the familial factors in modifying the risk of ESCC are not studied well. We conducted a case-control study to evaluate the relationship between family history of cancer (FHC) and ESCC risk. **Material and Methods:** We recruited 703 histopathologically confirmed ESCC cases and 1664 matched controls. Detailed information was obtained from participants on FHC. Conditional logistic regression models were used to calculate odds ratios (ORs), 95% confidence intervals (95% CIs) and interactions. **Results:** In general, FHC showed a strong association with ESCC risk which got strengthened in participants who had cancer in first degree relatives (OR 6.35; 95% CI, 4.32–9.32). Participants with cancer history in blood relation were at a higher risk of ESCC (siblings FHC group had OR = 10.80; 95% CI, 6.03 - 19.34) except in participants whose children had cancer. Association with ESCC risk was found also in participants who had history of cancer in their spouses. With increase in number of relatives with cancer history, the ESCC risk increased. On analysis the risk estimates in subjects who had same organ FHC, the overall association with ESCC across various relation groups was strengthened. In presence of FHC, the ESCC risk was very strong in subject who harbored certain variant genotypes of cytochrome P450 (CYP) 2C19, CYP2D6 and wild genotype of CYP2E1. The FHC has an additive effect on various ESCC risk factors reported from the population. An interaction of FHC with COPD and lung function at or near genome-wide significant level (P<10−8) in different population groups. **Conclusion:** The study shows that FHC as a proxy of genetic and shared environmental risk factors could be responsible for the high incidence of ESCC in Kashmir.
Sickle Cell Anaemia- Community Control Program for Tribal Population Groups of Satpuda Hilly Ranges from Nandurbar, Dist Maharashtra.

Y.S.Prabhune, P.N.Dalvi, G.T.Kulkarni, S.L.Kate
Sickle Cell Department, Maharashtra Arogya Mandal, Malwadi, Hadapsar, Pune-411028

Background: During last 10 years of 20th Century we screened most of the tribal population groups from Maharashtra State and found that Madia, Pardhan, Otkar and other tribal groups from Gadchiroli Dist. and Bhil & Pawara tribal population groups from Nandurbar District have higher prevalence of sickle cell disorder. (Heterozygous >20%). We identified 3 voluntary health organization i.e. SEARCH of Dr. Prakash Amte and AMHI AMCHYA AROGYASATHI of Dr. Satish Gogulwar, trained their staff members & encourage them to undertake work on Sickle Cell Anaemia. There was no any NGO working on this problem from Nandurbar District, hence in 1998 Maharashtra Arogya Mandal established Community Control Program Centre in Satpuda hilly ranges (Nandurbar district) with help of local tribal youths. Aim: To provide facilities and create awareness for sickle cell disorder in high prevalent tribal area. Objectives: Screening, Diagnosis, Possible Treatment, Counselling etc.

Material and Methods: The centre is popularly known as Sickle Cell Dawakhana (Roshmal Budurk, Taluka Dhadgaon, Dist. Nandurbar.) We provide all the following facilities -
- Accurate diagnosis
- Possible Treatment and follow up
- Population genetic surveys
- Health education –
- Improvement in the quality of life (QOL)
- Genetic counselling
- Marriage counselling
- Guidance for Prenatal diagnosis & Family Planning
- Research
- Training

Results: We are working in this area for last sixteen years. We screened more than 1.5 lakhs tribal people and >2000 patients are under our medical supervision. Conclusion: Patients and parents are happy with our medical and social treatment and we have good response. Ten point program will be presented.

Genome Wide Association Study of Gylcemic Related Traits in Indians

Priyanka Banerjee, Aarthi Ravindran, Anil K Giri, Nazir M Khan, Dwaipayan Bharadwaj
CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Near Sukhdev Vihar, New Delhi-110025

Background: Genome wide association study (GWAS) is a robust and reliable method to identify genomic segments associated with complex diseases like type 2 diabetes (T2D). T2D is defined on the basis of clinical measurements of fasting plasma glucose, post prandial glucose and glycosylated hemoglobin (HbA1C). Because of diverse nature of diabetes, several robust markers associated with contributing glycemic traits may lose their significance in the GWAS of T2D. Aims and objectives: We aimed to perform GWAS of several glycemic traits including fasting plasma glucose, fasting plasma insulin, HbA1C and post prandial glucose in >7,000 individuals of Indo-European ethnicity. Material and Methods: GWAS of glycemic traits were performed in two phases: discovery phase and replication phase. A total 2,280 individuals were genotyped using Illumina Human 610-Quad Bead chip. After stringent quality control 5,39,662 single nucleotide polymorphisms (SNPs) were tested for association with inverse normal transformed values of above mentioned traits. Signals with P-value <10^-4 were taken for further validation in replication phase in another 5,000 individuals using Golden Gate assay. Results: The discovery phase results identified various novel genetic loci significantly associated with glycemic related traits. We replicated several genetic variants (ADRA2A and CSMD1) associated with fasting plasma glucose and plasma insulin. Further, our analysis revealed that genetic variants associated with plasma glucose (CDKN2A, TP53INP1 and PRC1) post glucose load (TP53INP1, LPIN2, TCF7L2) and HbA1c (WISP1, CDKAL1, RASGRF1, HMG20A) were also found to be associated with published T2D GWAS. We further compared the allele frequencies of susceptible SNPs with that of total SNPs studied, and observed that 65% of susceptible SNPs had higher MAF, while 31% of variants were of intermediate frequency and 4% were low frequency variants. Conclusion: These results suggested that variants of glycemic related traits with higher MAF contributed significantly to the epidemic of T2D in Indians. This study will help in better understanding of complex etiology of T2D.

Study of Bacterial Diversity in Beta-Thalassemia Patients of North Maharashtra Region by tRFLP Analysis.

Ranjeet Kumar, Varsha Wankhade
Department of Zoology, SP Pune University, Pune

Background: Beta-thalassemia is autosomal recessive disorders caused by the reduced (β+) or absent (β−) synthesis of beta globin chains of the hemoglobin(Hb) tetramer (Weatherall et al.). Thalassemia is prevalent in the Mediterranean, Middle-East, Central Asia, Indian subcontinent, and Far East (Antonio et al.). T-RFLP analysis is rapid, convenient, sensitive, high-throughput, and highly reproducible method in microbial ecology studies and thus has been often used for analyzing large numbers of samples. Aims and Objectives: The primary goal of the t-RFLP analysis is to test the environmental samples using 16S rDNA as well as 18S rDNA amplification from community and restriction enzyme digestion (TaqI, Haelli) and to perform T-RF analysis (presence/absence of peaks and area of peaks) on the determination of bacterial species richness, diversity index, community structure and subsequent comparison of profiles between environmental samples. Material and Methods: Blood samples were collected from transfusion dependent thalassemia population from North Maharashtra. DNA isolation from Blood samples,
PCR amplification of the 16S gene, Restriction digestion and desalting of digested products, GeneMapper data analysis. **Results:** Numbers of T-RF developed in this technique have been used as indicators of microbial species richness. As a result of a T-RFLP profiling a graph called Electropherogram is formed, which is an intensity plot representation of an electrophoresis experiment. In the present study, in the thalassemia blood samples bacterial richness ranged from 2 to 34 with an average of 17.57. **Conclusion:** This result states that various kinds of bacteria are present in the blood of thalassemia patients. The thalassemia patients are prone to many types of infections. Bacterial population in the blood of thalassemia is the fact of concern and should be taken seriously.

P182

Effect of Parental stress, Coping Strategy and XmnI- G γ (HBG2) Polymorphism in Beta Thalassemia Disease Severity: An Evaluation of Gene- Environment Interaction.

Rajniash Kumar Singh, Swati Chawla, Anand Kumar Gyanendra Singh Wahengbam, Mamata Jena, B. Murry, V.R. Rao

Department of Anthropology, University of Delhi, Delhi- 110007

Background: The life expectancy of a child born with the Thalassemia disease depends upon regular blood transfusion. There is high variability in the severity of the disease (even between Thalassemia Major and Intermedia), depending upon the mutations causing the disease and linked XmnI- G γ (HBG2) gene promoter polymorphism. XmnI- G γ (HBG2) gene promoter polymorphism has an important role in the regulation of HbF level and will help in amelioration of the severity of Beta- Thalassemia disease. These factors are population specific. Besides genetic factors, Social, Psychological, nutritional, physical activity and economic background of the patients and their family also have immense influence on the quality of life and further on morbidity and mortality of the suffering Children. In view of the enormous heterogeneity in the clinical manifestation of the disease, it is important to evaluate genetic and environmental factors for better management of the affected individuals.

Aims and Objectives: To understand the relation and effect of parental stress, coping strategy and XmnI- G γ (HBG2) polymorphism and their interrelation the on health related quality of life associated with Beta thalassemia Patients.

Material and Methods: Detection of XmnI- G γ (HBG2) polymorphisms was done by PCR-RFLP and Genotyping method related to it. The Interview method was implemented on 85 patients and their parents for the collection of Parental stress, coping strategy and other disease related information through respective already validated Questionnaire schedules. **Result:** 51.67% of Thalassemia patients are heterozygous for XmnI- G γ (HBG2) (C/T) risk allele. Parental stress and coping strategy was to be important in disease severity among studied patients. **Conclusion:** Evaluation and understanding of interaction of genetic modifiers with social factors in the amelioration Beta thalassemia disease is important, besides therapies available.

P183

Oxidative DNA Damage Assessment in in situ COPD Cases

Gurpreet Kaur and G.Gandhi

Department of Human Genetics, Guru Nanak Dev University, Amritsar 143 005

Background: Chronic Obstructive Pulmonary Disease (COPD) is defined by airflow- limitation and is quantified by the lung function test. Stone-crushing activities of drilling and dressing cause respiratory distress which may lead to COPD from oxidative stress via inflammation and generation of reactive oxygen species. Oxidative stress can cause oxidation of cellular macromolecules including DNA. As oxidative DNA damage in COPD cases defined in situ have not come to attention, in the present study the comet assay in peripheral blood leukocytes of COPD cases identified from stone-crushing units and in the healthy non-exposed controls was carried out. **Aims and Objectives:** Association of basal and oxidative DNA damage in peripheral blood leukocytes of in situ defined COPD cases on the basis of the pulmonary function test. **Material and Methods:** After Institutional Ethics clearance and informed written voluntary consent, the COPD cases were identified by spirometry. The peripheral blood leukocytes from all the study participants was assessed for genetic damage using the alkaline single cell gel electrophoresis assay and the modified comet assay using lesion-specific enzymes viz. endonuclease III(Endo III) and formamidopyrimidine glycosylase(Fpg). Nucleoids (100/individual) were assessed for DNA damage using an image analysis system. The observations were subjected to statistical analysis. **Results:** The study group (males) comprised COPD cases (n=30; 38.53±1.21y) working at the stone-crushing units for 5-14y (10.36±0.50y) with a daily work-shift of 7-13h/day (9.60±0.32h), and the controls (n=30; 36.73±0.68y) who all smoked and chewed tobacco. COPD severity among the workers included moderate (40.00%), severe (26.66%) and very severe (33.33%) cases based on the expiratory lung volume. Genetic damage was significantly elevated in COPD cases (1.20 fold of %DNA in tail 48.02±1.32 vs. 39.91±1.02, p=0.000) with 1.6 fold increase in oxidized purines (1.47±0.13 vs. 0.92±0.09, p=0.002) compared to the controls. However, genetic damage did not vary for severity of COPD. **Conclusion:** The stone crushing activities hence have shown development of COPD and increased genetic damage in workers.

P184

Genomic Affinities Among Different Population Groups of Jammu Region of J&K State

Rakesh Kumar Panjaliya, Vikas Dogra, Parvinder Kumar, Subash Gupta

Department of Human Genetics, University of Jammu, J&K, India, 180006.

Background: Human genomic diversity is the result of differential accumulation of genetic variations in individuals
and populations throughout the evolution. The identification of such distinctive characteristics in the DNA represents the basis of human identification, genetic diversity and population genetics. The state of Jammu and Kashmir harbors heterogeneous population groups inhabiting the different geographical regions. A little work is being carried out regarding the study of genetic diversity of the people of the state. **Aims and Objectives:** To study genomic diversity study in six of the prominent population groups (Brahmins, Rajputs, Bhagats, Chamar, Gujjars and Jatt Sikhs). **Material and Methods:** Nine autosomal DNA markers belonging to seven Alu insertion/deletion polymorphisms namely Alu ACE, Alu APO, Alu PV-92, Alu PLAT, Alu FXIIIIB, Alu D1, Alu CD4; LPL *PvuII* and ESR *PvuII* polymorphism was studied. Blood samples were collected randomly from 600 unrelated healthy individuals after prior consent. DNA was extracted and amplified by PCR using target specific oligonucleotide primers and finally subjected to agarose gel electrophoresis. Further, for LPL *PvuII* and ESR *PvuII*, the PCR product was subjected to restriction digestion using *PvuII* restriction enzyme. Allele frequencies were used to calculate average heterozygosity. **Results:** All the markers except *Alu CD4* were found to be highly polymorphic with high heterozygosity values in almost all the population groups of the state. It was observed that most of the genomic diversity was attributed to individuals within the population. **Conclusion:** The study may help in future work on the genetic heterogeneity in other population groups of the state which may give a genetic insight and genetic basis underlying the different genetic diseases prevailing in the state.

P185

Prevalence of various cardiac disorders in Pune population and associated physiological complications

Syed Abrar Ahmad¹, Chandrakant Chavhan², Arundhati Diwan³, Rajesh Badaṇi⁴ and Varsha Wankhade⁵

¹Department of Zoology, Savitribai Phule Pune University, Pune, ²Bharti Hospital Katraj, Pune, ³Aditya Birla Hospital Chinchwad, Pune

Background: Cardiovascular disease (CVD) contributes about 16.7 million of global deaths and is among top five causes of deaths in Indian population, having a share of about 31% in total disease burden. CVD is one of leading cause of mortality in developed countries and accounts for 30% of all disability cases. **Aim and objectives:** The main objective of current study is to unravel prevalence of various cardiac disorders and associated complications in Pune population. **Methods:** The present study is approved by Institutional Human Ethics Committee of Bharti Hospital Katraj and Savitribai Phule Pune University, Pune. Hospital statistics are followed and all the entries are monitored. For classification of various types of CVD, published criteria are followed. All patients have gone through ECG, 2-D Echo cardiography, biochemical estimations and pathological analysis in the hospitals. **Results:** Prevalence percent of rheumatic value heart disease is 57%. Prevalence percent of other CVD is comparatively less such as Ischemic Heart disease (16.82%), Cardiomyopathy (3.73%), Coronary Heart disease (3.73%) and Congenital Heart disease (0.93%). Total serum cholesterol level is higher in females (160.66±42.66) than males (138.64±45.87). Serum alkaline phosphatase is elevated in females (73.33±25.98) than in males (67.47±23.65). Left ventricular ejection fraction (LVEF) % is slightly higher in females (55.93±8.94) than males (55.63±8.34). Males (n=25) shows higher respiratory rate 18.03±4.72 than females (n=82) 17.60±2.33. **Conclusion:** In Pune population prevalence of rheumatic value heart disease is found to be more as compared to other CVDs. Physiological complications are more severe in females.

P186

Role of various variants of phase-1 xenobiotic metabolising genes in modifying esophageal squamous cell carcinoma risk in Kashmir- a high risk area.

Gulzar Ahmad Bhat¹, Idrees Ayoub Shah¹, M Maqbool Lone¹, Nazir Ahmad Dar¹

¹Department of Biochemistry, University of Kashmir, Srinagar, J&K; ²Departments of Radiation Oncology, SK Institute of Medical Sciences, Sura, Srinagar, JK India. 190011

Background: Esophageal squamous cell carcinoma (ESCC) is the most common cancer and a great public health concern in Kashmir. Though some environmental risk factors are associated with its risk, the role of genetic markers is still unclear. **Aims:** The current study, was undertaken with the aim to analyse the relationship between gene variants of various Phase I xenobiotic metabolising enzymes (XMEs) like cytochromes P450 (CYP) 2A6a, 2A6b, 2A6c, 2A13, 2C19, 2D6, 2E1 and CYP1A1 and ESCC. **Methods:** We recruited 492 histopathologically confirmed ESCC cases and equal number of matched controls. Conditional logistic regression models were used to assess the association of various genotypes, gene-gene (GxG) and gene environment (GxE) interactions towards ESCC development. **Results:** Individual inverse association towards ESCC risk among subjects carrying variant genotypes of *CYP2A6c* (OR = 0.60; 95% CI = 0.36 – 0.96) and *CYP2A13* (OR = 0.53; 95% CI = 0.31 – 0.89) was retained in their combination as well (OR = 0.31; 95% CI = 0.11 – 0.87). However, an increased risk was observed in subjects harboring variant genotype of *CYP2C19* (OR = 3.33; 95% CI = 1.98 – 5.61) and *CYP2D6* (OR = 2.12; 95% CI = 1.11 – 4.25). The higher risk in participants with *CYP1A1* variant genotype (OR = 2.87; 95% CI = 1.00 - 8.44) was further increased when *CYP2E1* wild genotype was also present (OR = 5.68; 95% CI = 1.09 - 29.52). Synergistically, a significant GxG interactions turned out between *CYP2A6a* and *CYP2A6b* as well as between *CYP1A1* and *CYP2E1* genotypes (P < 0.001) in modifying ESCC risk. Similarly, positive GxE interactions were observed between *CYP2A6b*, *CYP2A13* and *CYP1A1* with smoking (P = < 0.05). **Conclusion:** Harboring certain genotypes of the phase-1 XMEs seems to play a role in the ESCC etiology in Kashmiri population.
P187

Association Of TP53 Expression And GST & CYP1A1 Polymorphism In Oral Squamous Cell Carcinoma
Chandreyee Chakraborty1, Prantar Chakrabarti2, Sandipan Gupta3, Debarati Chattopadhyay4, Utpal Coudhuri5, Sila Chakrabarti6

1Institute of Haematology & Transfusion Medicine, Medical College, Kolkata, India, 2Department of Haematology, NRIS Medical College and Hospital, Kolkata, India, 3Department of Plastic Surgery, Medical College, Kolkata, India, 4Department of Plastic Surgery, IPGME&R, SSKM Hospital, Kolkata, India

Background: Oral squamous cell carcinoma (OSCC), a malignancy of the lip, mouth or tongue is one of the most common cancers, with a global incidence of 75,000 to 80,000 new cases per year. Environmental etiologic agents like tobacco, alcohol, polyaromatic hydrocarbon (PAH) etc. are associated with the oral carcinogenesis. Cytochrome P450 1A1 (CYP1A1) gene producing Phase I enzymes are required to activate PAH which get detoxified by metabolism using Phase II enzymes Glutathione-S-Transferases (GST). Polymorphic CYP1A1 and GST enzymes involved in activation and detoxification deficiency of tobacco related carcinogens. TP53 is a key regulator of cell integrity with impact on cell cycling, growth, DNA repair, cell cycle arrest or apoptosis. If TP53 is not optimally expressed, the damaged DNA remains unrepaired and mutation becomes fixed in the dividing cells. Deregulated expression of TP53 plays an important role in carcinogenesis. Aims and Objectives: Comparison of CYP1A1, GST polymorphism with TP53 expression status interaction in diagnosed OSCC patients. Methods: A study on OSCC patients (n=20) were analyzed. GST polymorphism was detected by PCR amplification using specific primers and CYP1A1 polymorphism was analyzed using PCR-RFLP with total DNA isolated from peripheral blood. TP53 expression status was determined from the tumor tissues using quantitative Real-Time PCR (qRT-PCR). Results: The median age of the OSCC patients were 49.5 years. 65% of diagnosed OSCC patients were comprised of the polymorphic CYP1A1 out of which 84.62% have under-regulated TP53 expression. Even 60% of patients have polymorphic GST gene with 66.67% down-regulated TP53 expression cases among them. Again there were 30% cases with both polymorphic GST and CYP1A1 genes of which 83.33% TP53 under-expressed incidence. Conclusions: It may be stated from the study that Phase I (CYP1A1) and II (GST) enzyme polymorphisms and down-regulation of TP53 gene expression are associated with squamous cell carcinoma formation.

P188

Mutation in PAX3 associated with Neural Tube Defect
Rashmi1, A. N. Gangopadhyay2, A. Khanna3, Royana Singh4

1Department of Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi -221005, Uttar Pradesh, India, 2Department of Pediatrics Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi -221005, Uttar Pradesh, India, 3Department of Gynecology and Obstetrics, Institute of Medical Sciences, Banaras Hindu University, Varanasi -221005, Uttar Pradesh, India

Background: Neural tube defect is a complex congenital malformation which occurs due to both genetic and environmental factors. Pax3 gene belongs to the class of transcription factor having a paired domain, homeodomain, trancation domain and an octapeptide chain is also present. PAX3 gene is known to play important role in embryonic neural tube development. Aims and Objective: To check novel mutation in PAX3 gene associated with neural tube defect in familial cases. Material and Method: The study sample included 167 patients and 284 controls out of which six familial cases having more than one affected cases were chosen for further sequencing study in exonic region of PAX3 gene. Result: A missense mutation is observed in exon6 at position 222221238 with T>A change of aliphatic non polar amino acid to aromatic non polar amino acid I317Y. Another mutation was observed which showed insertion of T at position 222221368 in exon6 leading to frame shift mutation. The effect of this insertion was analyzed using mutation taster. The deleterious and damaging effect of mutation was analyzed using Polyphen. Conclusion: Our results support the hypothesis that mutations in the gene for PAX3 can lead to neural tube defect. The frame shift mutation at 313 position leads to further change in amino acid sequence downstream. This change is observed in homeodomain region of PAX3 gene which has a DNA binding activity and may play important role in neural crest migration and further neural tube closure.

P189

Study of Abacavir hypersensitivity in Indian Subpopulation and its association with HLA-B*5701 and HCP5 rs2395029
Parth S Shah1, Nidhi D Shah1, Sandip C Shah2, Bhavini S Shah3, Yash Y Panchal4, Divyang N Upadhyay1, Anuj S Shah1, Trupti N Patel2

1Department of Gynecology and Obstetrics, Institute of Medical Sciences, Banaras Hindu University, Varanasi -221005, Uttar Pradesh, India, 2Department of Pediatrics Surgery, IPGME&R, SSKM Hospital, Kolkata, India

Background: A cost cutting approach towards development of newer screening cum confirmatory test would save a lot of waiting anxiety for the patients simultaneously making the diagnostics economical and faster. The HLA complex protein 5 gene (hcp5) rs2395029(G) allele is in linkage disequilibrium with HLA B*57:01. This has been studied and reported in various global populations and is a proved pharmacogenomic biomarker. The presence of HLA B*57:01 has been associated with hypersensitivity reaction (HSR) to the drug abacavir in HIV positive individuals. Aims and Objectives- In the present study we aim to report the HLAB*57:01 associated HSR in a subpopulation of Indian subcontinent using simple screening test. Our major objective is to screen the patients for hcp5 polymorphism and purge the economically challenging and time taking step of confirmatory test. In the present study a positive and negative screening was further backed up with a confirmatory test to check the validity of the screening test. This is further followed by advice to individuals on their drug sensitivity status. Materials and Methods – In the present study we assess the risk of hypersensitivity to the drug abacavir in HIV positive individuals. We have attempted to detect the presence of the hcp5 gene polymorphism as a screening test, and in case that is positive or negative we proceed to HLA B typing using SSP-PCR or SBT, as confirmatory test. If the
confirmatory test is also positive, the final result is declared as positive and the patient is advised against abacavir. **Result** – We carried out a total screening of 137 patients for the presence of hcp5 polymorphism. The negative screening results of 124 individuals further confirmed them to be negative. A positive screening showed one isolated negative confirmatory while all others were found to be positive. This suggest that a screening test itself in case of negative results could be used as final confirmatory for abacavir HSR and the patients could be advised as per. **Conclusions** – We conclude that any early negative screening of hcp5 polymorphism at the given locus could play an important role by purging the need to go through the confirmatory studies for abacavir HSR and thus be more economical on the patients with a minimal time of reporting.

P190

Structural and Functional analysis of Protein-Protein interaction network in neurodegenerative disorders

Nitin Thukral¹, Navneet Kaur Soni², Yasha Hasija¹
¹Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Main Bawana Road, Delhi-110042, INDIA

Background: Proteins are the structural and functional workhouse in the cell that takes part in virtually every event within and between the cells and ultimately determine the behavior of biological system. Recently network centered approaches have been increasingly used to comprehend the fundamentals of biology. There are different databases documenting the interactions of proteins but none of them have been able to reveal the molecular mechanism behind the binding process occurring between molecules. One plausible way to address this problem is the inclusion of structural details of the complexes comprising of 3-D structures of proteins, interface as well as topological properties. **Aims and objectives**: Based on this premise, the present study is focused on studying the interface properties of neurodegenerative disorder related proteins to classify the neurodegenerative disorder associated proteins and non-associated proteins. It aims to find novel genetic markers that might increase the individual’s susceptibility to neurodegenerative disorders. **Materials and Methods**: The study takes into consideration- Alzheimer’s Disease, Parkinson’s Disease, Amyotrophic Lateral Sclerosis, Schizophrenia, Epilepsy, Huntington Disease, Friedreich Ataxia, Prion Disease and Progressive Supranuclear Palsy. The protein-protein interactions involved in these disorders were supplemented by interface properties coming from known complexes. Further, machine learning algorithm was used to generate a classifier to predict additional gene products that may be associated with these neurodegenerative disorders. **Results**: Among several classifying algorithms applied to generate machine learning models, best performance was achieved using Rotation Forest with 71.7% accuracy, 69.6% specificity and 72.7% sensitivity. A list 50 genes was obtained which are predicted to be associated with neurodegenerative disorders. **Conclusions**: The results from structural and functional analysis of neurological protein-protein interaction network can be used for further analysis and validation.

P191

A Preliminary Study on Human Spermiation Defect

Manish Jain¹, Ashutosh Halder²
¹Scientist, Department of Reproductive Biology, AIIMS, New Delhi, India, ²Professor, Reproductive Biology, AIIMS, New Delhi, India.

Background: Spermiation is the release of mature sperms from Sertoli Cells into the lumen of the seminiferous tubules. Spermiation defect is an unrecognized entity in andrology practice. Spermiation defects cases were never suspected and investigated in andrology clinic and no attempt was made to understand spermiation defect in human. Most of information on spermation defect so far is from animal experiments. Research on spermation can help to understand some of the cases of male infertility. We assume some cases of non obstructive azoospermia with normal testicular histology/cytology could be due to spermiation defect. **Aim and Objective**: In order to understand the etiologic factors of spermation defect, present study was proposed to explore Sertoli cell maturation status, sex chromosomal aneuploidy, retinoic acid deficiency and heavy metals toxicity in spermiation defect. **Material & Methods**: We enrolled 13 cases of spermation defect and 15 normal fertile men for this preliminary study. **Results**: Sex Chromosomal Aneuploidy was investigated by interphase FISH using X & Y Probes. The Yq microdeletion was investigated by PCR method. Presences of heavy metals (Lead, Cadmium, and Mercury, etc) were investigated by Elemental Electron Microscope scanning using Energy-dispersive X-ray spectroscopy (EDXS) in seminal testicular cells & Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) in serum. We have also measured vitamin A concentration in serum according to Kubler and Lorenz (1963) method. **Conclusions**: This study found normal value of AMH in all cases of spermiation defects (i.e mature Sertoli cell) and no sex chromosomal aneuploidy. The study found high level of estrogen (53% cases) and no differences in vitamin A level between normal fertile control & spermiation defects cases. The study also observed high platinum in 4 cases (along with high iron in 2 cases) in seminal cells and high level of lead, cadmium, chromium, manganese and nickel in serum. **Conclusions**: This finding indicates high serum concentration of heavy metals like lead, cadmium and high platinum & iron in seminal cells along with high estrogen may be important underlying etiologic factors for spermiation defect in human.

P192

Genetic variant analysis in three Indian ethnically diverse human genome

Seema Malhotra, Kiran Preet, Soma Sarkar
Defence Institute of Physiology and Allied Sciences, Lucknow road, Delhi 110054. Ph: 011-23883067. Email: molbio.dipas@gmail.com

Background: India with about one-sixth of the world’s
population, is mainly constituted of Indo European (IE), Austro-Asiatic (AA), Dravidian (DR) and Tibeto-Burman (TB) linguistic lineages with varied cultural and social framework. India has been underrepresented in genome-wide surveys of human variation. Understanding genetic diversity and risk allele identification by massively parallel sequencing approaches have been facilitated by Next Generation Sequencing (NGS) technologies. **Objective:** Creation of a catalogue of genetic variants from genome of three Indian ethnically diverse individuals for understanding the genetic architecture. **Method:** We sequenced the whole genome from three individuals belonging to Tibeto-Burman, Indo European and Dravidian (DR) families by Next Generation Sequencing Technology. Genomic DNA was sheared and used in the preparation of the whole genome shotgun libraries as per Illumina's library preparation protocols (Illumina, CA). The libraries were then sequenced on a HiSeq 2000 sequencing machine (Illumina, CA) to obtain around 15X sequence data. **Result:** Approximately 2.72 million SNPs and 0.26 million Indels (insertion deletion) in TB, 1.98 million SNPs and 0.16 million Indels in IE and 2.55 million SNPs and 0.23 million Indels SNPs in DR individual were obtained. **Conclusion:** Present study reports genetic variants in three ethnically diverse individuals of India. Availability of this information will aid studies aimed at understanding genetic diversity, performance markers and clinically relevant changes in context of heterogenous Indian population.

P193

Genetic Variants of APOBEC3G-90C/G and -571G/C Polymorphism and Risk of acquiring HIV infection

1Shruti D Marathe, 1Soni Mal, 1R.R.Gangakhedkar, 1Vijay Nema, 1Manisha Ghati, 2Seema Sahay, 2Shradha Bapat, 1Mansa, 1Srikant Tripathi, 1Sheela Godbole, 1Jyoti Pawar, 1R.S Paranjape, 1HariOm Singh

1Department of Molecular Biology, National AIDS Research Institute (NARI) Pune- 411026, India, 2Department of Clinical Sciences, National AIDS Research Institute Pune- 411026, India, 3Department of Social and Behavioral Science, National AIDS Research Institute Pune- 411026, India, 4Department of Epidemiology and Biostatistics, National AIDS Research Institute Pune- 411026, India.

Background: APOBEC3G is a member of Apolipoprotein B-mRNA Editing Catalytic Polypeptide (APOBEC) family and is known as a host viral restriction factor against HIV-1. APOBEC3G protein activity blocks retrovirus infection by inducing mutations of guanosines to adenosines (G=A) in the viral cDNA. Natural sequence variations in the promoters region of APOBEC3G gene may result in variable expression of APOBEC3G in different individuals. **Aims and Objectives:** We aimed to investigate the association of APOBEC3G-90C/G and -571G/C gene polymorphism with risk of acquiring HIV infection. **Materials and Methods:** In the present case control study, we enrolled a total of 156 HIV infected patients confirmed by ELISA test and 156 unrelated healthy individuals. Polymorphism for APOBEC3G-90C/G and -571G/C gene were genotyped by polymerase chain reaction and restriction enzyme length polymorphism. **Results:** Frequency of APOBEC3G-90C/G genotype did not significantly differ between HIV infected patients and healthy controls. HIV infected patients with -571GC genotype were at significantly higher risk of acquiring HIV infection (P=0.018; OR=3.46; 95% CI: 1.39-8.61) as compared with healthy controls. Patients with haplotype CC of APOBEC3G-90C/G and APOBEC3G-571G/C conferred significantly higher risk of acquiring HIV infection (P=0.041; =3.68; 95% CI: 1.06 - 12.79). In dominant models, individuals with -571GC+CC genotype have a significantly higher risk of acquiring HIV infection (P=0.01; OR=2.73; 95% CI: 11.24-6.02). **Conclusion:** Individuals with APOBEC3G-571G/C genotype and haplotype CC of APOBEC3G-90C/G and APOBEC3G-571G/C may have higher susceptibility to acquiring HIV infection. Limitation of the study is that the healthy controls may not have been exposed to similar risky behavior and hence this association should be studied in a larger comprehensive study.

P194

Clinical and molecular characterization of Fragile X Syndrome

Shyla R Menon, Aruna D’Souza, Shiny Babu, Rashmi Adhia, & Parag M Tamhankar

Genetic Research Centre, NIRRH, Parel, Mumbai-12

Fragile X syndrome (FXS) is the most common form of inherited intellectual impairment and known genetic cause of autism. It is one of the first human diseases to be linked to an expansion of triplet nucleotide repeats. FXS is caused by expansions of the CGG repeat sequence located in the 5’untranslated region of the FMR1 (fragile X mental retardation-1) gene. Estimates report that FXS affects approximately 1 in 4000 males and 1 in 6000 females. The syndrome is transmitted as an X-linked dominant trait and with reduced penetrance (80% in males and 30% in females) It is characterized by mild to severe mental retardation, with IQ between 20 and 60, mildly abnormal facial features of a prominent jaw and large ears, mainly in males, and macro-orchidism in post-pubescent males. In this study we evaluated 125 idiopathic mental retardates using CGG RP PCR. FMR1 exon 1 specific primer is used for the experiment. The primers were FMR1 Forward (TCA GGC GCT CAG CTC CGT TTC GGT TTC A) and FMR1 Reverse 6-carboxyfluorescin (FAM)-labeled (FAM-AAG CGC CAT TGG AGC CCC GCA CTTC). This PCR is primarily distinguished from a more conventional two-primer, gene-specific PCR by the addition of a third PCR primer that is complementary to the FMR1 triplet repeat region. In this method, primers hybridize randomly across the CGG repeat tract and at the 3’ junction of the CGG tract and downstream sequences. After PCR, samples were stored at -15 to -30°C and either protected from light before analysis or analyzed immediately by CE Automated Sequence Analysis. PCR products detected by CE were analyzed using Peak-Scanner 1.0 (Applied Biosystems). The peak size in base pairs was converted to the number of CGG repeats by referencing the base pair size of the process control alleles to the base pair size of the sample’s product peaks.
P195

CYP1A1 MspI gene polymorphism and breast cancer susceptibility in females of Jammu region

Ravi Sharma, Rakesh Panjaliya and Parvinder Kumar

Human Genetics Research cum Counselling Centre, University of Jammu

The cytochrome P450 1A1 gene codes for the phase I metabolic enzyme. This gene is considered as a possible candidate for breast cancer risk. The product of the gene is involved in the phase I detoxification of polycyclic aromatic hydrocarbons (PAHs) and 2-hydroxylation of estrogens and mammary carcinogens into 2-hydroxy catechol metabolites. Several studies have been carried out to detect the role of CYP1A1 polymorphisms in breast cancer risk but results are inconsistent. In the present work, a population based case-control study was designed to clarify their importance of CYP1A1Msp polymorphism in determining breast cancer susceptibility in females of Jammu region. A total of 52 cases and 65 age matched controls were genotyped for CYP1A1Msp polymorphism by using PCR, restriction digestion and electrophoresis. Potential non genetic risk factors for breast cancer were also considered for the said study. the results suggest that there is no significant correlation between CYP1A1 Msp I polymorphism and occurrence of breast cancer in females with breast cancer of Jammu region. Small sample size is the limitation of the present study.