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Abstract
The approach for the present work is to develop a one-dimensional heat conduction
model to infer the surface heating rates from the temperature data. The temperature history
is obtained from a nickel thin film sensor mounted on a quartz substrate during a supersonic
flight test. Polynomial curve fitting with regression analysis and cubic spline methods are
used to fit the temperature data. One-dimensional numerical schemes are developed to infer
surface heating rates by using Duhamel’s superposition integral. Since the temperature data
are acquired for 10 s, the one-dimensional behavior of heat penetration might not be
applicable for entire time scale. In order to include the lateral conduction of heat along the
depth of substrate, finite-element analysis of a more realistic gauge-substrate system is
carried out with commercial package ANSYS 11. With the inputs of surface heating rates
predicted from Duhamel’s superposition integral, the temperature history are then
recovered at various depths of the substrate and on the surface. The surface temperature
history recovered from FE analysis compares well with experimental temperature history
up to a time scale of 4 s. Also, numerical results for the representative problems show that
the surface heat flux can be predicted well by the cubic spline method.
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1. INTRODUCTION
Aerodynamic heating is one of the fundamental issues in the design of hypersonic flight. In general,
there is no direct method to determine the convective surface heating rates on the aerodynamic surfaces
rather they are obtained from transient temperature data. They are usually obtained by various types of
temperature sensors (such as thin film gauges, thermocouples etc) embedded at desired places on the
aerodynamic surface. So, accurate prediction of surface heating is based on appropriate mathematical
modeling of a realistic gauge-substrate system.

Several methods have been developed for interpretation of heat transfer rates obtained from
temperature data. Cook and Felderman (1966) presented a concise numerical technique to calculate the
transient heat flux by using piecewise linear function of the transient temperature history. Mehta et al.
(1988) investigated the influence of normal and lateral conduction on the temperature distribution and
heat transfer co-efficient on the surface of a typical sounding rocket with finite-element technique.
Babinsky and Edwards (1996) developed a technique to measure surface heat transfer on models in
hypersonic flow based on the colour response of encapsulated thermo-chromic liquid crystals. The local
heat transfer from the liquid crystal response is obtained by identifying suitable colour and comparing
them with the calibration curve. Yvonnet et al (2006) developed a simple inverse procedure to identify
the heat flux from temperature history in a typical orthogonal cutting process.
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Most of the high speed flight experiments are performed in the shock tunnels where the test flow
duration is in the range of 1ms. The transient temperature data are obtained by using thin film gauges
during the test flow duration. These gauges are resistance temperature detectors (RTD) as shown in Fig. 1.
The thin film (thickness in the order of few microns) is made out of temperature sensitive materials and
is deposited on an insulated substrate (Lyons and Gai 1988; Sahoo 2003). In most of the cases, the
sensing material is nickel/platinum and the substrate material is quartz/MACOR. It ensures the fact that
during the experimental time scale of 1ms, there is a very least chance of heat penetration along the
depth of the substrate. Thus, the temperature recorded by the sensor is same as that on the surface of
the substrate. As shown in Fig. 1, a nickel thin film is mounted on a quartz rod (2 mm diameter and
4 mm length) and the fine flexible wires are used for electrical connections from the sensor through
gold painting across the sides of the sensor. Thin film gauges are powered by a constant current source.
The thin film resistance (R) change across a thin-film with respect to temperature (T) change can be
expressed as (Miller 1981),

(1)

where α is the temperature coefficient of resistance which is obtained during calibration of the gauge;
R0 is the initial gauge resistance corresponding to initial temperature of T0.

Basically, the thin-film gauge operates on the principle that penetration of heat pulse is very much
small compared to the thickness of the substrate material within the time span of the measurement.
Therefore, the medium can be considered semi-infinite for the very short time period and the surface
heat transfer rates can be measured from temperature history with one-dimensional heat transfer
modeling with semi-infinite substrate (Cook and Felderman 1966; Schultz and Jones 1973; Beck 1985;
Monde 2000). However, the extent (in terms of time scale) to which the semi-infinite assumption holds
good, is still unknown. In the present work, one of the temperature signal (Fig. 2) obtained for 10 s, from
a nickel thin film sensor mounted on a quartz substrate in supersonic flight test, is considered (Sahoo
2008). Mathematical techniques such as polynomial fitting and cubic spline methods are used to obtain
the closed-form solution of temperature data. With known thermal properties of nickel and quartz,
surface heating rates are obtained from Duhamel’s superposition integral. In order to check the effects
of multi-dimensional effects of heat penetration along the depth of the substrate, the gauge-substrate
system is modeled through FE simulation. With the inputs of transient heating rates from the analytical
analysis, the temperature history is obtained at various depths of the substrate.
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Figure 1. Main features of a thin film gauge (Sahoo 2008).



2. ONE DIMENSIONAL HEAT CONDUCTION MODEL
Governing equation for surface heat transfer rate is based on one-dimensional, semi-infinite solid
model (Fig. 3). The following assumptions are made in the development of the model; (i) temperature
measured by sensing element is identical to the temperature of surface of the substrate; (ii) there is no
lateral heat conduction through the substrate and heat is conducted only in the direction normal to the
surface; (iii) thermal properties of the substrate are constant; (iv) the substrate is of infinite length and
the temperature rise at infinity is zero.

Using these assumptions, the transient temperature distribution T(t) along the depth of the substrate
(x) can be written as;

(2)

where ρ, c and k are the density, specific heat and thermal conductivity of the substrate material
and for quartz, the values are 2200 kg/m3, 670 J/kg.K and 1.4 W/m.K, respectively (Doorly and
Oldfield 1986).

2.1. Duhamel’s Superposition Integral
Most of the aerodynamic bodies flying at hypersonic speeds encounter a strong shock through which
there is a sudden increase in the static pressure, temperature and density. In terms of heat transfer
modeling, it can be treated as a step change in the surface temperature. Carslaw and Jaeger (1959)
obtained the one-dimensional semi-infinite medium solution for a step change in the surface
temperature with Duhamel’s superposition integral and is given by the following equation,
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Figure 2. Absolute gauge temperature recorded from thin film gauge during supersonic flight test
(Sahoo 2008).



where y(τ ) is closed form solution of measured temperature history. They can be obtained through
appropriate curve fitting technique such as polynomial fitting and cubic-spline technique with
regression analysis.

2.1.1. Least Square Curve Fitting
Polynomial regression data fitting technique can be applied to smooth the surface temperature time
response (Jain et al 2003).

(4)

Re-writing these (i +1) equations and putting into matrix form,

(5)

where all summations above are over number of the data points. The data points 
(tj, yj) for , in the matrix are known from the experimental temperature history. So, the
coefficients A0, A1,.....Aj can be determined by using matrix inversion method.
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Figure 3. Schematic diagram of thin film gauge.



Substitution of the polynomial approximation (4) into equation (3) and its integration yields,

(6)

2.1.2. Cubic Spline Method
The other method to reproduce the temperature-time curve is by cubic-spline technique in which the
small segments of the curve can be closely approximated. A spline is simply a piecewise polynomial in
which the pieces are joined together at points called as, ‘knots’. In particular, a cubic spline is a
piecewise cubic polynomial, constructed in such a way that second derivative continuity is preserved
at the knots (Reinsch 1967).

The experimental temperature is represented by a third-order spline in the form (Jan 1996);

(7)

where τ = stt is scaled time and st is the scaling factor. The four constants in the above equation can be
obtained as;

(8)

Starting with equation (3) and the assumption that the surface temperature response is approximated
by cubic splines (7), the surface heat flux can be expressed as (Jan 1996);

(9)
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2.1.3. Prediction of Surface Heating Rates
Temperature history obtained from the thin film sensor is fitted through least square regression analysis
(polynomial fitting) and cubic spline method. Various degrees of polynomial are attempted and it is
observed that 18-degree polynomial closely approximates the experimental temperature history.
The major weakness of this technique is the low accuracy because it allows the calculation of high-
order derivatives, especially when the time spread of the fitted data is large (Jan 1996). These
restrictions can be avoided by using an alternate procedure based on cubic spline approximation of the
temperature time data. Here, the smoothing spline is continuously differentiable and the second
derivative also exits at the time interval under consideration. Fig. 4 shows the comparison of both the
techniques with respect to experimental temperature history. With the closed-form temperature solution
by both the techniques, the MATLAB code is developed using Eqs. (6) and (9) to infer the surface
heating rates. The transient surface heating rates are then compared in Fig. 5. It is clear from the figure
that the surface heating rates suddenly raises (after an initial delay of 0.3 s) to a peak value of 80 kW/m2

within the time scale of 1.587 s. Similar, time scale is also observed from the temperature-time history
(Fig. 4). Thus, it resembles closely to the nature of step rise in the heating rates at the surface of the
sensor. However, the peak surface heat flux predicted by polynomial fitting is about 6% less compared
to that of cubic-spline method. As discussed above in this section, the cubic spline method of fitting the
temperature data is a better approximation while predicting the surface heating rates because it
resembles the trend of experimental temperature data.

3. SIMULATION OF GAUGE-SUBSTRATE SYSTEM THROUGH FEM
The methods discussed in Sec. 2, mainly deals with one-dimensional semi-infinite medium solution for
the governing Eq. (2). During the short time scale measurement (~1 ms), it is reasonable to assume piece-
wise linear fitting of temperature data while inferring the surface heating rates (Cook and Felderman
1966; Schultz and Jones 1973; Sahoo 2003). When extended to larger time scale (say 10 s), the effects of
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Figure 4. Curve fitting techniques of temperature-time data.



lateral heat conduction can be quite significant. However, the extent to which the one-dimensional
assumption holds well is still unknown. One of the approaches is to develop a finite-element model of a
realistic gauge-substrate system, apply the transient surface heat flux obtained through one-dimensional
analysis (Eqs. 6 and 9), recover temperature history and then compare it with experimental
signal. In this work, the commercial finite element analysis package, ANSYS 11.0, is used to simulate
the phenomenon of heat transfer of a gauge-substrate (nickel-quartz) system. The flow chart for this
procedure is shown in Fig. 6 where the recovered temperature history is compared with
experimental time history of temperature obtained for flight test.

3.1. Finite Element Analysis
Since thickness of the thin film gauge is very small (~1 µm), the thermal resistance offered by the film
for the flow of heat is very small. Therefore only substrate is modeled for finite element analysis with
appropriate boundary conditions as shown in Fig. 7. As shown in the figure, variable heat flux is applied
on the upper surface EF while lower boundary GI is maintained at constant temperature of 294 K. The
surfaces EI and FG are taken as adiabatic walls. The FE mesh (Fig. 8) is generated by quadratic 8-node
element (PLANE 77) each with length of 0.0001mm. The element has one degree of freedom at each
node. The 8-node elements have compatible temperature shapes and are well suited to model curved
boundaries in transient studies. In order to capture the sudden temperature change, finer mesh is used
at the upper boundary wall.

3.2. Analytical Results vs FE Analysis
With appropriate boundary conditions, the simulation is carried out with the surface heating rates
(Eqs 6 and 9; Fig. 5) as an input applied at the upper surface (EF) in the FE model. In both the cases

T tS ( ){ }
′( ){ }T tS
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Figure 5. Prediction of convective surface heating rates from temperature history (one
dimensional semi-infinite solution).



of heat input, the transient temperature variation along the depth of the substrate is obtained (Fig. 9).
From these two figures, it is observed that both the methods almost reproduce same surface
temperature history compared to the experimental signal. At a closer look in experimental temperature
history (Fig. 2), it is seen that there is a discontinuity in surface temperature appearing at time 0.7 s.
Such discontinuity is only appearing in the recovered temperatures (Fig. 9-a) with FE simulation
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almost exactly at same time when the heat input is applied corresponding to cubic-spline fitting of
temperature data. Fig. 9-b does not show discontinuity in surface heating rates. So, as discussed in
Sec. 2.2.3, cubic-spline method of fitting the temperature data is a better approximation in predicting
surface heating rates.

Another close look in Figs. 9 reveals that the thermal penetration into the depth of the substrate is
very less up to 2.5 s but it goes on increasing after 2.5 s. Also, for x ≥ 3.9 mm, the temperature remains
constant up to 4 s but it goes on increasing beyond 4 s. The picture becomes clearer in the temperature
contours obtained through FE simulation at different time steps (Fig. 10). It is clear that till 2 s analysis
of temperature data, the thermal penetration appears to be at slower rate such that the one-dimensional
heat conduction modeling semi-infinite medium can still be valid for the present gauge-substrate
system. The isotherm lines are almost parallel to the surface i.e. the heat flow can be considered
as one dimensional. Till 4 s, the transient solution also supports one-dimensional approximations
because the experimental temperature history is almost exactly recovered (Fig. 4). Beyond 4 s, it would
be inappropriate to consider the heat modeling to be one-dimensional for a quartz substrate because the
thermal penetration rate occurs at a faster rate. The limiting time for which the semi-infinite assumption
can be considered, is given by the equation (Diller and Kidd 1997),

(11)

where , is the thermal diffusivity of the substrate. For nickel substrate with thermal penetration

depth of 4 mm, the limiting time is obtained as,

(12)

This means that for any time longer than 4.21 s, the semi-infinite approximation will no longer be
valid and thus supports the inferences obtained though FE analysis.
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Figure 9. Transient temperature distribution along the depth of substrate through finite element
simulation: (a) heat input with cubic-spline fitting of experimental temperature data; (b) heat input
with polynomial fitting of experimental temperature data.
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4. CONCLUSION
The transient temperature-time history is recorded during a supersonic flight test from a nickel thin film
gauge mounted on a quartz substrate. The convective surface heating rates are obtained from the
temperature data by one-dimensional heat conduction modeling. Since the substrate material (quartz)
is an insulator, it is reasonable to assume semi-infinite medium in the analysis. The results are also
supported by the FE simulation of a realistic gauge-substrate system. Although the temperature data is
recorded for 10 s, the comparative results from analytical analysis and FE simulation show that the
semi-infinite assumption is valid only up to 4 s. In this present work, it is an attempt to see the effect
of lateral heat conduction with respect to time scale under consideration. Nevertheless, the model
problem studied is taken as justification of the one-dimensional assumption in the calculation methods.
The most advanced verification of the two-dimensional effects is currently ongoing with the realistic
boundary conditions through FE simulation and will be reported in future publications.
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