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In the post genom e era . a major goal in molec­

ular biology is to det ermine the function of the many 

thousands of genes present in the vertebra te qe ­

name , The zebrafish t Demo rerio ) pro vide s an al­

most ide al genetic model to identify the biological 

roles of these novel genes. in part because their 

embryos are transpa rent and de velop rap id ly. The 

zebrafish has many adva ntages over mouse for ge­

nome-wide mutagenesis s tudies , allOWing for easi­

er. cheaper and faster functional charac teriza tion of 

novel genes in the vertebra te genome. Many molec­

ular research tools such as chemical mutagenesis. 

transgenesis, gene trapping. gene knockdown. 

TILLING, gene targe ting , RNAi and chemical ge­

ne tic screen are now available in zebrafish . Combi­

ning all the forward , reve rse . and chemical gene tic 

tools . it is expected that zebrafish will make invalu ­

ab le contribution to vertebrate func tional genom ics in 

functional annotation of the genes , mode ling human 

diseases and drug disco ver ies, 
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1 Zebrafish genome, mutagenesis and trans­

genesis 

The zeb rafish CDan io reri o ) was developed as 

a vert eb ra te m odel sys t em because of it s ad van ta­

ges in tr ans pa ren t and ex ternal em bryon ic dev elop ­

men t . [ l. 2] The zebra fish A B s t ra in is the bes t cha r­

act er ized and mos t widely used s t ra in in researc h 

lab orat ories ( Fi g. l A) , Most recently, an ad ult ­

trans par ent zebrafish st rain na me d " Sheer " ze­

brafi sh ha s been develo ped CFi g. 1B). a llo wing for 

dir ect vis ua liza t ion of interna l o rgans o r fluores ­

cent ly m arked cel ls in ad ult zebra fish Cunp ub lishe d 

dat a , perso na l comm unica t io n wit h Dr. H enry T o­

rnasi ewi cz) . 

Fig. 1 Adult male (top) and femal e (below) zebrafish (A). Female transparent "sheer" zebraf ish with egg visible within 

the belly (8). The picture of "sheer" zebrafish was kindly provided by Dr. Henry Tomasiewicz.
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The zebrafish .genome consists of ~ 1. 7 X 109 

bp of DNA, which is organized into 25 pairs of 

chromosomes. It is estimated that the zebrafish ge­

nome contains 30 000 genes, which is 20 % more»<;» 

than that of the other known mammalian ge­

nomes. [3J To promote zebrafish as a model organ­

ism, the Wellcome Trust Sanger Institute started 

the Zebrafish Genome Project in 2001 to sequence 

the entire zebrafish genome (http: / Iwww. sanger. 

ac. uk/Projects/D _ rerio/). The zebrafish Zv8 ge­

nome assembly was released in June, 2008 and it is 

expected that the Zebrafish Genome Project to be 

completed within the next two to three years. 

Taking advantage of the large numbers of prog­

enies from breeding, large-scale END (N-ethyl-N­

nitrosourea ) mutagenesis in zebrafish was per­

formed in a few labs, resulting in combined of over 

six thousand mutant strains. [4,5J In these studies, 

the END mutagenesis was performed in male ze­

brafish (spermatogonia) and the phenotypes were 

screened in F3 progenies for mutations. [4,5J These 

early studies screened for developmental phenotypes in­

cluding abnormalities of gastrulation , epiboly and axial 

patterning in the early developmental stages as well as 

abnormal development of notochord, brain, fin, retina, 

heart and blood. Many mutations resembling human 

disease states have also been identified. More than 500 

genes might be defined by complementation analysis in 

these mutations. [6J However, it is laborious to identify 

mutant genes by positional cloning in END-induced mu­

tants (Table 1). To facilitate the cloning of the mutant 

genes by inverse PCR, a more sophisticated pseudo­

typed retrovirus based insertional mutagenesis method 

has been developed, leading to the identification of 315 

developmentally regulated genes in zebrafish in one 
screen. [7,8J 

The first few zebrafish transgenic lines were 

generated by microinjection of plasmid DNA into 

the newly fertilized eggs about two decades 

ago. [9,10J However, the early technology in genera­

ting transgenic zebrafish by microinjection of naked 

DNA is hampered by low frequency of transgene 

germline transmission and unreliable expression of 

the inserted genes. [l1J The transgenesis frequencies 

are increased by an approach to flank the transgene 

with I-SceI restriction sites and eo-inject the vector 

with the I-SceI meganuclease. [12J The use of fluores­

cent transgenic reporter such as green or red fl uo­

rescent protein (GFP or RFP) allows for visualiza-
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tion of gene expression through the embryonic de­

velopmental stages without sacrificing the ani­

mal. [13,14J These fluorescent reporters are now wide­

ly used in zebrafish, including GFP or RFP fusion 
genes. [15J 

The discovery of two vertebrate transposon 

systems, Sleeping Beauty (SB) and Tol2, has ena­

bled the generation of transgenic zebrafish at a very 

high efficiency. [16,17J The SB and Tol2 transposon 

systems consist of a transposon DNA vector and a 

transposase mRNA, which are delivered by microin­

jection into one to two-cell stage zebrafish embryos. 

The SB and Tol2 vectors integrate into the genome 

by a "cut and paste" mechanism at a high efficiency 

when delivered together with their tansposases. [18J 

It is generally believed that SB and Tol2 trans­

posons integrate into the genome in a random fash­

ion. Though the SB transposon is reported to al­

ways integrate at the TA nucleotides , the Tol2 ele­

ment has no specificity for its integration sites at the 

DNA sequence level. [19J SB and Tol2 transposons 

have now been used widely in generating transgenic 

zebrafish. [20--25J Most recently, a third transposon 

system, the DsIAc elements, has also been success­

fully used in zebrafish with high frequencies of 

transgenesis. [26J Unlike the SB and T ol2 trans­

posoon systems, the Ds/Ac elements are of plant 

origin. The maize Dissociation CDs') element con­

tains two terminal repeats but no transposase gene 

and it depends on Ac element or Ac transposase for 

transactivation. The Ac element is an autonomous 

trasponson carrying a transposase gene between the 

cis-acting terminal sequences that contain 11-bp im­

perfect terminal repeats. The efficient transposition 

of maize Ds/Ac in zebrafish genome suggests that 

AclDs elements do not rely on host specific factors 

for transposition. [26J 

2 Transposon-mediated gene-trap mutagenesis 
in zebrafish 

Gene-trap mutagenesis is a technique to identify 

gene function and expression patterns by random in­

sertion of reporters into the genome. This strategy 

is successfully applied in mouse mutagenesis to 

"trap" developmentally regulated genes, [27J enhanc­

ers[28J and promoters. [29J An International Gene 

Trap Consortium (IGTC) has been formed to 

introduce insertional loss-of-function mutations across 
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Table 1 Zebrfafish Functional Genomics Tools and Their Applicatioins 

Levels of Manipulation Technology	 Feature References 

DNA	 END mutagenesis 

Transgenesis 

Trapping based mutagenesis 

TILLING 

Gene tageting 

Site-specific recombination 

Inducible gene expression 

mRNA	 Morpholino
 

RNAi
 

(J) 

Random mutation induced by chemical; all phenotypes; positional cloning to identify the mu­

tated genes 

DNA microinjection into fertilized egg; fluorescent marker; transposon or I-SceI meganucle­

ase to facilitate transgenesis 

Includes enhancer, promoter or gene trap; random mutation; genome-wide; easy to identify 

mutated gene; often delivered in transposon systems 

Combines END mutagenesis with targeted PCR sequening; identify point mutations of se­

lected genes 

Functional knockout of selected genes; reverse genetics; using zinc finger nuclease (ZFN) 

technology 

Cre-Ioxl? recombination system 

Spatial and temporal control of gene expression by heat chemical, prodrug , laser, light or 

transcriptional factors 

Antisense-based gene knockdown technology using synthetic oligonucleotides , dellivered by 

microinj ection 

Down-regulate gene expresssion by microRNA 

4,5 

9,12,13,16,17,26 

21-25 

48,49 

54,55 

15,61,62,69 

73-75,77,78 

35,36,41-43 

44,45 

o Protein	 Chemical genetic screen Developing embryos for screening; often fluorescently labelled; small molecule drugs; in vi- 82-88 
m vo screenz o 
m 
-n 
o c 
z 
o » 
-; 
6 z 
z 
o 
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the mouse genome (http://www. genetrap. org."), 

However, the mouse gene trapping is inefficient as 

compared to similar strategies in zebrafish because 

mouse gene trapping is conducted in embryonic 

stem (ES) cells, [30J involving complicated embryo 

transplantation processes. Because zebrafish em­

bryos develop externally within water, by emplo­

ying fluorescent reporters such as GFP or RFP, 

the gene trapping events can be directly visualized 

under the microscope. The transparent and rapid 

zebrafish embryonic development (3 days) allows 

for quick identification of gene-" trapped" zebrafish 

in early embryonic developmental and organogenic 

stages (Fig. 2). 

While the gene trapping strategy" traps" the 

exons upstream (5'-exon trap) or downstream (3'­

exon trap or polyA trap) of the transgene insertion 

site, the enhancer trapping is designed specifically 

to identify tissue specific regulatory enhancer ele­

ments. L30J The polyA trapping was not used as of­

ten as promoter and 5'-gene trapping in mice be­

cause of the existence of a mRNA-surveillance 

mechanism, nonsense-mediated mRNA decay 

(NMD) , which resulted in biased vector integra­

tion into the 3' most intron of the gene. This prob­

lem in mouse polyA trapping has been solved by 

vector modification with the insertion of an IRES 

sequence before the SD (splicing donor) site. [31J 

The NMD mechanism is conserved in 
eukaryotes. L32 - 34J 

Transposon-based gene and enhancer trapping 

methods using SB or Tol2 transposon have been 

developed and tested in zebrafish, L20 - 25J which is il­

lustrated in figure 2. A high-efficiency mutagenic 

gene trapping vector, the Gene-Breaking Transpo­

son (GBT) system containing a 5' -mutagenicity 

cassette and a 3' -gene finding cassette, was devel­

oped for zebrafish mutagenic gene trapping 

screen. [25J The GBT-based vector was successfully 

used to generate a recessive loss-of-function muta­

tion at the Tnnt2 locus, resulting homozygous ze­

brafish without a heart beat (silent heart muta­

tion, personal communication with Dr. Stephen 

Ekker). Our lab has recently performed a zebrafish 

gene trapping pilot screen and identified trapped 

lines with tissue-specific EGFP expression in de­

veloping zebrafish brain, muscle fibers and heart 

(Fig. 2). 
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3 Zebrafish gene knockdown and TILLING 

The zebrafish embryos develop very fast; it 

only takes three days for a fertilized zebrafish egg 

to develop into a newly hatched fry. This develop­

mental feature makes antisense-based morpholino 

knockdown technology very efficient in developing 

zebrafish embryos. [35,36J Morpholinos (MOs) are 

chemically modified synthetic oligonucleotides that 

can hybridize to the single-stranded nucleic acid se­

quences with high affinity. [37J MOs are stable and 

not subject to any known endogenous enzymatic 

degradation. [38J To down-regulate gene expres­

sion, MOs are usually designed to sterically block 

the pre-mRNA splicing or protein translation. 

Since the first report of the efficient MO gene 

knockdown of ubiquitously expressed GFP trans­

gene, phenocoping of gene mutations in zebrafish 

and the development of MO-based zebrafish models 

of human diseases, [35J many studies have been pub­

lished to down-regulate gene expression in ze­

brafish early embryonic patterning, cardiovascu­

lar, neural and pancreatic development, and many 

other developmental processes. [35,36,39 - 43J 

Another gene knockdown technology that has 

been successfully used in zebrafish is RNA inter­

ference (RNAi), which involves microRNA mole­

cules. L44,45J MicroRNAs are non-coding single-

stranded RNA molecules of 21-23 nucleotides in 

length that are processed from small hairpin RNAs 

(shRNA). Their function is to specifically silence 

the gene expression by degrading the targeted mR­

NA molecules. [46,47J 

However, as the gene knockdown is manipu­

lated at mRNA level (table 1), this down-regula­

tion cannot hereditarily pass onto the next genera­

tion. To generate mutations into specific genes in 

the genome, a reverse genetics tool termed Target 

Induced Local Lesions In Genomes (TILLING) 

was developed. [48J This target-selected mutagene­

sis strategy combines ENU mutagenesis in genera­

tion of F1 mutant zebrafish library with nested 

peR and direct sequencing in id entification of the 

mutated genes. TILLING has been successfully 

used to generate a library of 4608 ENU-muta­

genized F1 animals and screened for mutations of 

16 genes. 255 mutations were identified in this 
study. [49J 

39 



A SA c 

Tol2 transposon gene trapping vector 

e~----AAAA SA 
transposase mRNA 

B 

microinjection 
random integration 

D 

• trapped gene 
Enhancer exon 4 

E gene-trapped zebrafis h em bryos 

c 

~,, ' . ' - , ­

3 dpf 

__ -*;:;, ... _. d 
... -.....<. - - ­

3 dpf 

Fig. 2 Trans poson-m ediated genome-wide gene tra ppi ng. The gene tra p vector carrying a sp lici ng acce pto r site (SA) and 

the trans posase are delivered int o the newly fe rti li zed zebra f isii egg by microin j ection ( A & B [ . The vector randomly in­

teg rates into th e geno me (C l and occasiona lly in to gene (D) . Th e upstream exo n of th e insertion will splice onto th e tran s­

gene and the EGFP will be ex press ed. 2-3 days a fte r mlcroin j ecti on the ex pressi on patt ern of the injected zebraf ish can 

be visua lize d under fl uorescent microscop e (El. 

4 Zebrafish gene targeting 

T he mouse ge ne targeting st rategy ut ilizes a 

mecha nism of homol ogou s re com binat ion in em bry­

o n ic s te rn ( ES) ce lls . [ 50 . 51J ES-like ce lls ha ve been i­

so la ted in zebra fish , [ 52J and the cult ure d zebraf is h 

ES ce ll s have the ab ility to con t r ibute to gcrrn­

lines. [ 53J H ow ev er, thi s st rat eg y has not ye t been 

used to s uccessfully gen er ate target ed ge ne kn ock­

o ut in ze bra fish . The zeb ra fs ih gene knoc ko ut 

tech nique ha s been recentl y dev elop ed us in g a com­

plete ly new targeting s t ra te gy , the Zinc F inger 

N ucle as e (ZFN )-ba se d knockout s t ra tegy. [ 54 . 55J 

ZFNs are designed protein s consis t ing of engi­

neered zin c fin ger DNA-bind ing domains linked to 

the cat a lyt ic domain of the FokI res tr ict ion endo ­

nucl eas e. Based on th e zinc finger array cho sen , 

th is enginee red en zym e can cut the ta rget gen e and 

ge ne ra te mutation th rough DNA repa ir of the 

doub le s t rand break ( F ig. 3). In zebra fsi h gene 

targeting, the ZFNs are del iver ed as m RNA by mi­

cro inject ion in to fert ilized zeb ra fis h egg . T he two 

sim ult aneo us ly publ ish ed reports bot h de mo ns t ra ­

ted t hat t he delivery of ZF Ns resul ted in target ed 

ge ne knockou t and germline transmiss ion a t a h igh 

fr equ en cy ( > 25 %). [5 4.5 5J Whil e Doyon et al . se-
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lecti vel y ta rget ed the zebrafish g old en and no tai l / ogy III zebrafish is th e availa bility of the custom-de­

R rach y ury Cntl ') genes , M eng et al. knock ed out signed ZFNs although the sta nda rd protocols for how 

the zebrafish or tholog of the vascu la r endothe lial to generate them were published. [ 56- 59J Nevertheless . 

growt h fact or-2 rece pto r , kdr. Both groups ob­ it is anticipated that ZF N-base d gene knockout tech­

served sma ll deletions and insert ions at the knockou t nology will generate man y invaluable zebrafish models 

loci. [5 1. 55] The limiting factor in deploying this technol- for human diseases. 

A 

Targeted gene 
ZFNs mRNA 

B 
.D Mlcrolnjectlon 

.D Targeted cut 01selected exon 

c 

DNAdouble strand break 

.D DNA repairto Introduce mutations 

o 
Targeted genewith small 
deletion orinsertion 

ZFN-L ZFN-R
 
'1"1'C ATe CAG ACG GTG rr.r GTG GAC GTG GGC W"1' 
'1"1'C ATe CAG ACG • •• • TO GAC GTG GGC -7 
'1"1'C ATe CAG ACa G • . . At GTG GGC -9 
'1"1'C ATe CAG ACG G'1'G rr.r a t t t OT GGA COT GGG C +4 

Fig 3 Zebra fisb gene targeting by Zinc Finger Nucleas es (ZFNs) technology. Th e mRNAs of the ZFN arrays were micro­

in] ected into one-cell zebraf isn em bryo (A). Th e ZFN protein s were translated. bound to the target ed region and cut th e 

DNA (B &C ). Cell DNA repair introduced mutations with small deletion s or in sertions (D). [ss] 

two lox P sites ( 34 bp conse ns us sequences ) . The 

Cre/ lox P sys te m has be en w idely used in genera­5 Site-specific recombination systems for con­
ti ng co nditiona l tra nsge nic mi ce or condi tional gen e ditional mutagenesis in zebrafish 
knockout mice. [6 0J ere recom binase has a lso been 

shown to be an ex trem ely potent enzyme In ze­Cre is a ba ct erioph age s ite-spe cific recombi­
brafish . [ 61- 6' J Pan et a l . genera ted a floxed i. lcx I' nas e w hi ch ca talyzes t he recombina tio n bet ween 
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flanked) GFP transgenic line with the floxed GFP 

controlled by the muscle-specific mylz2 promoter. 

After microinjection of the in vitro synthesized Cre 

mRNA into the floxed mylz2: GFP embryos, ex­

pression of GFP was dramatically reduced and the 

deletion of GFP was confirmed by PCR. [61J The 

Cre/ loxP system has also been applied in condi­

tional mutagenesis in ze brafish. A zebrafish T cell 

leukemia model was established by expression of 

mMyc transgene under the control of a lymphoid­

specific rag2 promoter. [65J The transgenic fish car­

rying mMyc were often severely diseased when 

they reached reproductive maturity age. There­

fore, a conditional approach was further pursued to 

generate a rag2-loxP-dsRed-loxP-EGFP /mMyc 

transgenic line. In this line, mMyc-induced T cell 

leukemia could only be generated after Cre-media­

ted DNA excision. [62J 

A few transgenic Cre zebrafish lines have been 

created with the Cre gene under the control of vari­

ous tissue-specific promoters such as heat shock 

promoter HSP70, hematoblast-specific Mlo2 and 

occyte-specific zp3 promoters. [66-68J To make Cre 

expression pattern to be detected easily, Cre/GFP 

fusion genes have been constructed and demonstra­

ted to be functional in zebrafish. =15J A reporter ze­

brafish line, designated G2R, has been generated 

recently, which expressed RFP upon Cre-medica­

ted excision of loxP-flanked GFP gene (green to 
red). [69J 

The Flp-frt recombination system is another 

site-specific recombination system. It involves the 

recombination of sequences between two short 

( 22 bp) Flipase Recognition Target (frt ) sites 

by the Flipase enzyme (Flp) derived from the 

yeast. [70J This recombination system is function­

ally conserved and highly active in mammalian 

cells[71,72] but has not yet been reported in ze­

brafish. 

6 Inducible gene expression systems 

Transgenic lines with genes of interest be reg­

ulated in both spatial and temporal manners would 

be especially useful. Zebrafish heat shock promot­

er hsp70 has been cloned and used to control GFP 

expression in transgenic zebrafish. At normal tem­

peratures (28. 5°C), GFP was not detectable in 

transgenic embryos, but was robustly expressed 

throughout the embryo following an increase in 

ambient temperature (37°C). [73J Furthermore, la­

ser-induced gene expression in specific muscle fi­

bers was successfully performed under control of 

the hsp70 promoter. [73J 

RNA caging is another technology to spatially 

and temporally control gene expression. The 

caged-mRNA by 6-bromo-7-hydroxycoumarin-4-yl 

methyl (Bhc) almost had no translational activi ty 

but recovered transcriptional activity after unca­

ging by illumination of UV light. [74J The photocag­

ing technique has been reported to silence zebrafish 

gene through RNAi in zebrafish embryo. [75J 

The galactose-inducible system of yeast, me­

diated by the transcriptional activator Ga14 and its 

consensus UAS binding site, has been demonstra­

ted to efficiently trap zebrafish genes in a self-re­

porting trap vector design. [76J U sing a bacterial ni­

troreductase (NTR) gene under the U AS control, 

tissue-specific cell ablation has be achieved with 

the Ga14 regulatory system. [76J The NTR enzyme 

converts prodrugs such as metronidazole (Met) to 

cytotoxin. The NTR-Met system has also been 

employed to achieve cell lineage ablation in pancre­

atic a cells and cardiomyocytes. [77, 78J Most re­

cently, a mifepristone-inducible LexPR system has 

been developed and tested in zebrafsih. This vector 

system contains a DNA-binding domain of the bac­

terial LexA repressor , a truncated ligand-binding 

domain of the human progesterone receptor and an 

activation domain of the human NF-I<:B/p65 pro­

tein. [79J Using this system, Emelyanov and Pari­

nov generated both driver and effector zebrafish 

lines and demonstrated that the transgene was 

strictly controlled and could be induced at any 

stage of the life cycle through the administration of 

mifepristone in the fish water. [79J 

7 Chemical genetic screen 

Chemical genetics is a relatively new scientific 

discipline that has emerged over the past 10 years 

and refers to the use of small molecules to affect 

biological functions. [80,81J Similar to the classical 

forward and reverse genetics, chemical genetics 

can result in many phenotypes or biological traits 

which may lead to elucidation of biological func­

tions or drug discoveries. Zebrafish is particularly 

suitable for chemical genetic screening because of 
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its large num-ber of progenies from breeding, the 

small embryo size, and the rapid and external em­

bryonic development. Zebrafish embryos are per­

meable to small molecules, allowing for easy drug 

administration in the fish water. Comparing to tra­

ditional cell-based screens, zebrafish provides a 

whole vertebrate system for drug screening that 

combines the biological complexity of in vivo mod­

els with the ability for high throughput screen­

ing. [82,83l The use of developing zebrafish embryos 

for drug screen also provides a quick assessment 

for potential toxicity in vivo. 

Several chemical genetic screens have been car­

ried out using zebrafish embryos and the phenotypes 

screened include organ development, [84 ,85J cell cycle 

control, [86, 871 and antiangiogenesis. [88J M urphey et 

al. used developing zebrafish embryos to screen for 

cell cycle inhibitors. They screened a 16, 320-com­

pound library (DIVERSet) in 384 well plates and i­

dentified 14 compounds with confirmed novel activi­

ties in cell cycle control. [871 Most recently, Tran et 

al. conducted an antiangiogenic compound screen u­

SIng fluorescent transgenic zebrafish embryos 

TG(VEGf~2 :GRCFP). They identified three com­

pounds, SU4312, AG1478 and indirubin-3'-mon­

oxime (IRC)), as antiangiogenic compounds in ze­

brafish. IRO was further confirmed to inhibit human 

umbilical vein endothelial cell tube formation and 

proliferation. [88l 

8 Conclusion 

Since George Streisinger and colleagues de­

scribed the scientific value of the small (3-4 cm), 

striped teleost named Danio rerio about 28 years 

ago, the zebrafish has gradually become one of fa­

vorite model organisms for developmental biologists. 

The technological advances to functionally dissect the 

zebrafish genome by both forward and reverse genet­

ics-based approaches allow the generation of mutant 

zebrafish strains at a tremendously increased pace, 

which will greatly facilitate the annotation of the ver­

tebrate genome. The newly developed zebrafish gene 

targeting technology immediately places zebrafish in 

the frontier of modeling human diseases. It is also 

expected that the chemical genetic screening in ze­

brafish will lead to the discovery of novel therapeutic 

drugs to target many diseases and biological path­

ways. 
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