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ABSTR ACT: Rice blast is a continuous threat in rice ecosystems across the globe; its dynamics is becoming complex in the changing climatic conditions. 
Host resistance is still a viable option; hence, the exploration of resistance genes and their novel alleles is indispensable. The majority of the blast resistance 
genes belong to nucleotide-binding site and leucine-rich repeat (LRR) domain. In the present study, diverse LRR alleles of five major blast resistance genes 
(Pi2, Pi9, Pib, Pita, and Pi37) were cloned from 13 different Oryza species to determine the nucleotide diversity as well as to identify the single nucleotide 
polymorphisms, InDels, conserved domains, and protein functional sites. Although Pi9 and Pi2 are homologous genes, significant nucleotide variations and 
variants in the motifs distribution were observed. Among the five genes, Pi37 showed the highest nucleotide diversity and Pita showed the least diversity. 
The phylogenetic groups of alleles were correlated with the identified haplotypes. The motif (xxLxLxx) was present among all the alleles of blast R gene 
sequences across various Oryza species, indicating its importance. The appearance of post-translational modification sites in the protein sequences of these 
alleles also indicates its nature of involvement in host–pathogen interactions. The present study offers clues in further understanding the molecular evolution 
of the LRR domain of resistance genes, which is a key determinant of host–pathogen interactions.
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Introduction
Rice is the staple food crop for more than half of the population 
across the globe. However, it has been challenged by various 
biotic and abiotic stresses every year, leading to major yield 
losses. Among the various biotic stresses, rice blast caused by 
Magnaporthe oryzae leads to significant yield loss ranging from 
10% to 30% annually.1 This pathogen not only infects rice 
but also causes damages in other important crops like wheat 
and barley. Because of the importance of this disease, it has 
become a good model system to the researchers for the study 
of plant–pathogen interactions.

Plants have diverse defense mechanisms to overcome 
the disease-causing pathogens; among these, R gene-
mediated resistance is prominent.2 Among the cloned and 
well-characterized rice blast R genes, majority of them 
are nucleotide-binding site (NBS) and leucine-rich repeat 
(LRR) proteins that are characterized by NBS and LRR 
domains, as well as variable amino- and carboxyl-terminal 
domains.3 Among the four domains, NBS domain involves 
in signal transduction4 and LRR domain involves in pathogen 
recognition.5 Thus, LRR domain plays a key role in recog-
nizing pathogen-specific effectors. Several studies conducted 
across different genera revealed that NBS–LRR genes play an 

important role in plants.6 Of all the domains, LRRs are highly 
variable and known to be under diversifying selection.7,8 This 
suggests that the LRR region would be always under selec-
tion pressures, which promote the evolution of new pathogen 
specificities, thus contributing to the recognition of different 
pathogen Avr proteins.9

Although there are many R genes identified, cloned, 
and characterized, the highly variable pathogen plasticity 
demands for the identification of new blast R genes to over-
come the disease severity. In this context, understanding the 
origin, evolution, and diversification of LRR domains from 
various wild species comprising different Oryza genomes may 
certainly give some possible clues regarding the co-evolution 
of LRR domain under selection pressure. This understanding 
would be highly advantageous for incorporating these novel 
alleles into the cultivated varieties through classical breeding 
approaches. In our present study, an attempt has been made to 
understand the identification of variations among various R 
genes in the LRR domain. For this, we had chosen 13 Oryza 
species for five important blast R genes, ie, Pi2, Pi9, Pib, Pita, 
and Pi37.10–14 The obtained sequences were analyzed using 
various bioinformatics tools. The study revealed the nucleotide 
sequence diversity and the evolutionary relationship among 
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the Oryza species. In addition, the distribution of conserved 
domains and the protein functional sites of five genes are also 
discussed.

Materials and Methods
Plant materials. Thirteen Oryza species were chosen for 

the current study to understand the LRR diversity among five 
blast R genes, namely, Pita, Pib, Pi9, Pi2, and Pi37 (Table 1).

Amplification and cloning of LRR domains of selected 
R genes. The genomic DNA of 13 Oryza species was isolated 
from the leaves of 20-day-old seedlings by modified potas-
sium acetate method.15 Based on the reported allele sequence 
of R genes, the LRR domain was determined and the prim-
ers were designed specifically for the LRR domain using the 
Primer3 software (Supplementary Table 1). In order to iden-
tify the gene specificity, the primers were designed such that 
they cover the entire LRR region and also have slight over-
lap (~100 bp) with the NBS domain of the gene. The selected 
regions were amplified from 13 Oryza species by using high-
fidelity Taq DNA polymerase (Fermentas). The PCR amplifi-
cation was performed in 20 µL reaction volume with a profile 
of initial denaturation at 94°C for five minutes, followed by 
35 cycles of denaturation at 94°C for one minute, annealing 
at 57°C for one minute, extension at 72°C for two minutes, 
and final extension of 10 minutes at 72°C. The targeted alleles 
were amplified and cloned into ZeBaTA cloning vector from 
the selected plant materials (Table 1).16 Escherichia coli DH5α 
cells were used for the transformation and multiplication of 
recombinant DNA, and the plasmid was isolated using DNA 
purification kit (Promega). Each amplicon was sequenced in 
both directions with four clones per gene, which was car-
ried out at the central facility of Ohio State University (OSU; 
USA). Only high-quality sequences (Phred score .20 per 
base) were selected for further sequence analysis.

Nucleotide sequence analysis. The sequences obtained 
from various Oryza species for different genes were analyzed 
separately for their nucleotide polymorphisms. For each gene 
LRR sequence, single nucleotide polymorphisms (SNPs), 
InDels and Ka/Ks values were identified by comparing these 
sequences with the reported allele using DnaSP version 5.10 
(http://www.ub.edu/dnasp/).17 In addition, nucleotide diver-
sity (π), Tajima’s D test, and haplotype number were deter-
mined using DnaSP version 5.10. Pairwise alignment, 
evolutionary distances was calculated through comparing with 
the reference allele and phylogenic analysis of the sequences 
using the neighbor-joining method with a bootstrap value of 
1000 replicates; all these analysis were done using MEGA 
version 4.1.18

Protein sequence analysis. All the nucleotide sequences 
were converted to protein sequences using web-based 
ExPASy—translate tool (http://web.expasy.org/translate/). 
The obtained protein sequences were analyzed for conserved 
domain search using National Center for Biotechnology 
Information’s (NCBI’s) conserved domain database (http://
www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) with a stan-
dard result mode. Protein functional sites were determined 
using Prosite (http://prosite.expasy.org/scanprosite/) and 
MyHits motif scan (http://myhits.isb-sib.ch/cgi-bin/motif_
scan) with default parameters.

Results
The 13 alleles of each blast resistance gene were amplified, 
cloned, and sequenced from different wild species of Oryza 
as discussed in Materials and methods. The cloned sequences 
were ready to submit in NCBI (Supplementary Table 2).

Nucleotide variations among the five blast R genes. 
Nucleotide diversity among all alleles varied from 0.01 to 
0.58; further to know this diversity, SNPs and InDels were 
detected. Among all the alleles, Pi37 allele of Oryza punc-
tata followed by Pi9 allele of Oryza australiensis and Pi2 allele 
of Oryza rufipogon showed the highest number of SNPs. 
The least number of SNPs were observed in alleles such as 
Pita allele of O. australiensis, Pi9 alleles of Oryza glaberrima 
and O. rufipogon, and Pi2 allele of Oryza alata. The highest 
number of InDels were found in Pi37 allele of O. punctata 
(BB) followed by Pi9 allele of O. australiensis and Pi2 allele 
of O. alata. To dissect these nucleotide variations further-
more, Ka/Ks ratios were determined. Among all the alleles, 
Pi37 allele of O. australiensis, Pi9 allele of O. rufipogon, and 
Pi37 allele of O. alata have shown the highest Ka/Ks ratios. 
The details of the nucleotide diversity of alleles of each gene 
are given in Table 2 and Supplementary Table 3. Among 
the alleles, the evolutionary distances ranged from 0.01 to 
1.20. Pi2 allele of O. australiensis, Pi9 of Oryza longistaminata, 
Pib allele of Oryza officinalis, Pita allele of Oryza minuta, and 
Pi37 allele of O. alata showed high evolution when compared 
to other alleles of each gene. To know the evolution of alleles, 
Tajima’s D values were computed for all the genes. In the allele 

Table 1. list of Oryza species used in the study.

S.NO. SPECIES GENOME 
COMPOSITION

ACCESSION 
NO.

1 O. sativa aa

2 O. rufipogon aa 106424

3 O. longistaminata aa 110404

4 O. glaberrima aa 96717 (CG14)

5 O. officinalis CC 100896

6 O. punctata BBCC 105690

7 O. minuta BBCC 101141

8 O. alata CCdd 105143

9 O. australiensis ee 100882

10 O. brachyantha ff 101232

11 O. granulata GG 102118

12 O. ridleyi HHJJ 100821

13 O. coartata HHKK 104502
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of Pi2, the Tajima’s D value was positive (0.59), and for other 
genes, it was negative, ranging from -0.15 to -0.50.

Phylogenetic analysis was also carried out among the 
alleles of each gene, and the observed phylogenetic groups were 
compared with the identified haplotypes (Fig. 1). It revealed 
the presence of a minimum of five groups in case of Pita to the 
maximum of 11 groups in case of Pi9.

LRR domains were observed in all the alleles. The 
xxLxLxx motif is the main motif embedded in the LRR region. 
These motifs function as an interaction site for the pathogen 
with the R gene. Hence, the distributions of this motif among 
the alleles of tested genes were observed, and it was found 
that xxLxLxx motif was highly abundant between 100 and 
600 amino acids in the alleles of Pi2 (400–500), Pi9 (400), 
Pib (200–300), Pita (400; 600–800), and Pi37 (600–800; 
1000–1200; Supplementary Fig. 1). In addition to this, various 
functional sites such as N-glycosylation site, casein kinase II 
(CK2) phosphorylation site and N-myristoylation site were 
also observed in all the deduced proteins of various alleles, 

which are known to involve in the post-translation modifica-
tions (Supplementary Table 4).

Discussion
The majority of the plant disease resistance genes were 
encoded by NBS and LRR domain proteins.19 In NBS–LRR 
class of R genes, LRR domain is the most important domain 
since it determines the host–pathogen interactions. Although 
many reports explained about the diversity of R genes and 
NBS–LRR genes,20 but there are few studies existing on the 
diversity of LRR domains of R genes.

Although many blast R genes and quantitative trait loci 
(QTLs) were reported till date, the five blast resistance genes 
that were known to be effective in India and also in many coun-
tries were selected which are being used routinely in breeding 
programs.13,21–32 Pita gene is studied by many other researchers 
for the DNA polymorphism among landraces and wild species.28

The Oryza species are valuable reservoirs for many biotic 
and abiotic stress resistance genes.33 Many studies have shown 

Figure 1. Phylogenetic analysis of five major blast resistance genes explains about the relationship among 13 Oryza species at each loci. A represents 
the Pi2 gene, B represents the Pi9 gene, C represents the Pib gene, D represents the Pita gene, and E represents the Pi37 gene. The reference gene 
sequence used for analysis is indicated by *.
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the importance of wild Oryza species in the improvement of 
rice crop.34 However, few studies have exploited these Oryza 
species for isolation of blast resistance genes.33 Till now, only 
two genes, namely, Pi9 and Pi40, were identified from wild 
Oryza species O. minuta and O. australiensis.11,35 Novel alleles 
of blast genes and evolutionary studies for two major blast R 
genes, Pita and Pi54, from wild species were determined.28,36 
Systematic attempts have not been made to utilize wild species 
for mining of LRR alleles among important blast resistance 
genes. Here, we made an attempt to isolate and analyze the 
nucleotide diversity of various LRR alleles of five major blast 
resistance genes using 13 wild Oryza species comprising of 
different genomes. Thirteen Oryza species were used to obtain 
novel and divergent alleles of these genes. The present study 
focused on the sequence polymorphisms along with protein 
functional sites for five major blast resistance genes to know 
their evolution and phylogenetic relationships among the 
deduced alleles. It is a known fact that SNPs and InDels form 
the basis of genetic variation in nature, which is measured by 
nucleotide diversity. High polymorphisms (SNPs and InDels) 
were observed in the LRR of Pi37, whereas least was observed 
in Pita. Most of the SNPs are non-synonymous changes, 
which revealed by showing higher Ka/Ks values. Tajima D 
test values of the four genes were negative, which indicates that 
these genes are under purifying selection across the species of 
Oryza, whereas the Pi2 showed positive Tajima value, which 
may be under balancing selection, suggesting that Pi2 alleles 
are maintained in a given population. Purifying selection was 
also evidenced in Pi54 alleles, while Pita and Pib alleles were 
deduced from landraces, diverse set of rice accessions, and 
wild species.36–39 Similar observations were made in the case 
of Xa21, Xa26, and xa5 alleles obtained from wild species.40,41 
Most of the alleles originating from five blast resistance genes 
showed non-synonymous (Ka) to synonymous (Ks) ratios ,1, 
indicating that they were under purifying selection, which 
was also evident from Tajima’s D values.

Phylogenetic analysis of the alleles of each gene revealed 
that the reference (reported) alleles of the five blast resistance 
genes were grouped with the Oryza sativa. We observed alleles 
derived from four genes distributed into five to eight haplo-
types except Pi9 alleles where in more haplotypes were found.

The principle domain (xxLxLxx) in the LRR region was 
observed among all the alleles, as this motif is crucial and 
known to be involved in protein–protein interactions. Poly-
morphisms in this domain leading to different blast genes were 
evidenced in the case of Pi2 and Piz-t where a single amino 
acid difference in this xxLxLxx motif has a crucial role in 
resistance specificity toward blast pathogen.10 In addition, the 
posterior portion of the LRR domain is reported to be impor-
tant, where a lot of variations among Pi2 and Pi9 cultivars have 
been found.42 Similar results have been observed in two genes, 
i.e., Pita and Pi37 alleles (xxLxLxx motifs were enriched in 
600–800 and 1000–1200 regions), whereas in other three 
genes, middle portion of LRR seems to be more important.

The various functional sites in the LRR region revealed 
the presence of CK2 phosphorylation sites, N-glycosylation 
sites, N-myristoylation sites, and protein kinase C phosphor-
ylation sites. The frequency of these functional sites varies 
across the species based on their polymorphisms caused due 
to SNPs and InDels.43 Interestingly, of the four functional 
sites, two were phosphorylation sites, which are known to 
play key role in host–pathogen interactions, abiotic stresses, 
and photosynthesis.44 Furthermore, LRR regions are known 
to involve in photomorphogenesis, which may help in better 
adaptation.36 The other two protein functional sites include 
N-glycosylation sites and N-myristoylation sites, which are 
known to play a pivotal role in disease resistance mecha-
nisms. Earlier studies explained that the N-glycosylation 
sites involved in bacterial blight resistance governed by Xa3 
and Xa26 genes45 and tomato leaf mould disease resistance 
mediated through Cf-9,46 whereas N-myristoylation site has 
been reported in the NBS–LRR protein of Arabidopsis and 
also in Pi54, which helps in recognition of its cognate bacte-
rial Avr proteins AvrPphB and Avr-Pi54.47,48 We have also 
observed the pattern of repeats of amino acids such as cys-
teine, lysine, proline, glycine, phenylalanine, and arginine. 
These patterns have multiple functions with distinct nature, 
which generally depends on the adjacent motifs or sequences 
that together form recognition sites for bacterial or fungal 
Avr genes. The variations at the post-translation sites may not 
lead to loss of functionality, but the variation in pathogen 
interaction sites within the gene results in modified proteins 
that may lead to susceptibility.43 This kind of systematic study 
of LRR regions would be highly beneficial for further experi-
mental validation.

Conclusion
We have successfully cloned and sequenced the LRR alleles 
of five major blast resistance genes in Oryza species. Based on 
nucleotide and protein variations, extensive polymorphisms 
were observed among various LRR alleles and many of poly-
morphisms were non-synonymous in nature and many alleles 
are undergoing purifying selection. It appears that xxLxLxx 
motif is necessary for host–pathogen interaction and hence 
found in all LRR alleles of five genes. The positional conser-
vation of this motif also reveals that the middle and posterior 
parts of the LRR region are the most important. The appear-
ance of post-translational sites in these LRR regions also 
indicates their importance among the alleles. The deduced 
LRR alleles of these five genes from divergent Oryza sources 
species can be explored for providing resistance; thereby these 
can be deployed in rice breeding programs. The present work 
offers clues in selecting the LRR alleles for broadening the 
blast resistance.
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