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ABSTRACT 

A one-dimensional (1-D) advection-dispersion equation (ADE) with a first-
order biochemical reaction was solved using the superposition method. Three 
sets of initial and boundary conditions were considered. The boundary condi
tion of the model virtually can be any type of chemical or BOD concentration 
functions. Thus, the model accepts discrete and time-dependent input and 
produces a continuous concentration distribution over time and space. A 
simple and accurate equation was derived to calculate the upper-bound 
memory time of a given river. Since the model requires only a finite record-
length, it can be easily updated. The model was compared with some analytical 
and numerical models and was found to be accurate, simple, and easy to apply. 

Much work has been done on one-dimensional (1-D) modeling of chemical 
transport in a river or through a soil column. A multitude of solutions of the 1-D 
advection-dispersion equation (ADE) are available. Some of the solutions are 
numerical [1-3], and some are analytical [4-9]. Van Genuchten and Alves listed 
forty-four analytical solutions for the 1-D ADE for different initial and boundary 
conditions as well as for different orders of biochemical reactions [8]. Although 
these analytical solutions were originally obtained for 1-D subsurface flow, they 
can also be extended to 1-D surface flow by letting the retardation factor and 
medium porosity be unity, respectively. 
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Although 1-D analytical models may not be adequate in many cases and 2-D or 
3-D numerical models may, therefore, be employed [10], analytical solutions to 
1-D flow cases are, nevertheless, useful. A survey of recent literature showed that 
the current 1-D analytical solutions often ignore two important and practical 
aspects in river quality simulation: 

1. The concentration at a boundary, or at a pollutant source, is always 
time-dependent and its functional form is not known; and 

2. Observations at a boundary are normally available in discrete form. 

Thus, it is desirable to derive an analytical model considering these two aspects. A 
typical example of such a practical environmental problem is shown in Figure 1, 
that shows a river with an observation station at the upstream end near a pollutant 
source. Observations of the biochemical oxygen demand (BOD) are given in 
discrete form. A simple accurate model is needed to predict the BOD concentra
tion distribution along the river. It may be even more important to know what the 
concentration profile would be if the pollutant source concentration was double or 
triple its present value tomorrow. 

In this study, a simple analytical model was developed, with input being 
discrete and time-dependent, and output being continuous over time and space. 
The unit step function was used to represent the observed input series, and the 
superposition method was employed to obtain the solution to the 1-D advection-
dispersion equation. In order to update the model as more observed data became 
available and to keep the length of the input series as short as possible, a simple 
equation was derived to calculate the upper-bound memory time of a given river 
reach. 

MODEL DEVELOPMENT 

Let there be a river reach with an observation station at the upstream end of 
the river reach or at a pollutant source, and with an average flow velocity u. The 
BOD or chemical concentration in the reach is assumed to be uniformly dis
tributed through the flow cross-section so that a one-dimensional model may be 
applied. The BOD concentration values at the station can be taken at a fixed time 
interval, i.e., hourly, daily, or weekly. An example of the observations is shown in 
Figure 1. 

The governing equation for the 1-D BOD concentration transport process in a 
river reach can be obtained by the mass-balance principle as 

dC dC d2C 
dt dx dx2 (1) 

where D ^ T 1 ) is the dispersion coefficient, KJCT1) is the first-order decay 
constant, C(ML'3) is the BOD concentration, t(T) is the time, and x(L) is the 
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distance from the observation station. The following initial and boundary condi
tions may be used to solve equation (1): 

C(x,0) = C! 

C ( 0 , 0 « 2 ( Ο[0,ίΔη - C(0,(i-1)AT) ) -H(t-iAT) 

lim C(x,t) = 0 

j - 0 

(2) 

(3) 

(4) 
here n is the number of readings at the observation station (later, it will be shown 
that not all observations have to be considered as the maximum practical value of 
n is proportional to the memory length of the river), ΔΤ is the fixed observation 
time interval (T), Cx is the initial BOD concentration along the river - a constant 
(ML"3), C(0,-AT = 0, and H(t-iAT) is the step function or the Heaviside function 
defined as 

H(t-iAT) = 0, t-iAT<0 
^ 1, Î - Ι 'ΔΓΑΟ 

For simplicity, let C(0,-AT) = 0, and 

ACi - C[0,iAT\ - C[0,(i-1)AT], i = 0,1,2,...,«. 

The upstream boundary condition given in equation (3) can be reduced to 
n 

C(0,i)= 2 &CiH(t-iAT) 
i-0 

(5) 

(6) 

(7) 
Solution to equation (1) with the boundary and initial conditions (2), (3), and (4) 
was obtained using the Laplace transform method. The derivation was, however, 
very lengthy. It was found later that the solution can be more easily obtained by 
the superposition method. If AQ = 0, i = 1 ,2 , . . . , n, and C(0,0) = Q , where Q is 
some constant, then equation (7) reduces to 

C(0,/) = Co (8) 
The solution of equation (1), along with the initial condition (2) and the boundary 
conditions (4) and (8), has been obtained by Van Genuchten and Alves [8]: 

C(x,t) = Cx expi-Kit) U - ± erfc 1 x-ut 
V4Dt 

1 
2CXP (f) erfc x+ut 

y/ADt 

exp ux 
2D 

erfc 
MDt 

- V T J 
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-exp 
'ux ΓΓ 
W+S!DX erfc V4Di + y/TI 

(9) 

where λ = u2/4D + K^ erfc[·] is the complementary error function, and exp[·] is 
the exponential function. If the boundary condition (8) changes to 

C(0,t) = ^CiH(t-iM) (10) 

and equations (1), (2), and (4) remain the same, then by comparison with equation 
(8) and using the definition of the step function, the corresponding solution can be 
obtained by replacing t in the second and third terms of equation (9) by (t-ίΔΤ) and 
CobyACiH(t-iAT), 

c(x,t) = Cx εχρ(-Χχ/) \ 1 - - erfc 
X-Ut 

AC, 
+ T - e x p 

AC, 
+ — e x p 

ux / X 
2D y DX 

ux 
2D ND 

H(t - ΪΔ7) · erfc 

H(t - ΪΔ7) · erfc 

1 i u x \ _r --exp(-)erfc x + ut 
73D7 

^D(t-iM)-^'-iA7^ 

yÌ4D(t-ÌAT)+^t-ÌA7^ (H) 
Because equations (1), (2), (4), and (7) are linear, the solution to equation (1) 
along with the boundary and initial conditions (2), (4), and (7) can be obtained by 
applying the method of superposition. This can be done by breaking up the given 
problem in equations (1) through (4) into n + 1 simpler problems: 

dC dC d2C 
^ + UTx=D-^-K*C 

C(x,0)-C, 

C(0,i) = C(0,0) 

C(oo,f) = 0 (problem 1) 

and 

dC dC d2C 

-iï + UTx-D^-K'C 

C(x,0) = 0 

C(0,0 = [ C(0,i&T) - C Γθ,(ί - 1)ΔΓ| ]H(t - ί'ΔΓ) 

C(oo,/) = 0 

i = 1,2 n, (problem 2 to problem n + 1) 
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Clearly, the sum of all these n + 1 problems is equivalent to the original p rob lem. 
Solut ion to each of these problems is given by equat ion (11) where C j = 0 for 
problems 2 to n + 1. Summat ion of all of the n + 1 solutions yields the solut ion to 
the original p roblem defined by equat ions (1) to (4), 

C(x,t)-Ci 

+ ±exp 

+ ±exp 

expi-tfii) 1 

ux /λ~ 
ID sJDX 

ux /λ~~ 

2erfc 
x-ut 
VÄDt 

1 lux, , x + ut 
VÄD1 

1 - J H 2^'W-^-«*[v4Pt'-ttfl - ^ ^ 7 ^ 
J i-o 

^ A C / 7 / ( / - i A 7 ) e r / c V4D(f-ιΔΓ) + VX(i - ιΔΓ) 
(12) 

This equation is referred to as the new one-dimensional analytical model 
(N1AM). On the other hand, if the river is initially not contaminated so that the 
initial condition in equation (2) is given as 

C(x,0) = 0 (13) 

then the solution of equation (1), subject to equations (4), (7), and (13), becomes 

C(x,t) - ^ exp λ. 
2D \IDX ux 

+ 2 exp ux λ_ 
2D\1 DX 

^Ò.CiH(t-itJ)-erfc 
i-0 

^ A C , 7 / ( i - i A r ) e r f c 

V4D(< - iisT) ■ VX(i - ιΔΓ) 

J i-0 
V4D(i - ι'ΔΓ) + VX(i - ι'ΔΓ) 

(14) 

For the simplest case, if the initial and boundary conditions are given by equa
tions^), (8), and (13), then equation (14) further reduces to 

C(x,r) = ^ e x p 

■exp 

ux 

ux 
2D t] DX 

erfc 

erfc 

V4DÏ 

VÄDt 

• VXF 

■ V3Ü (15) 

Thus, equation (12) is the general solution and solutions given by equations (14) 
and (15) are special cases. 

MEMORY TIME OF A RIVER 

It may be noted that as the number of observat ions increases, applicat ion of 
equat ion (12) or (14) becomes cumbersome. However , some of the past observa
tions may have no effect on the current B O D profiles. Thus , a segment of a river 
m a y have a finite memory with regard to the B O D input concentrat ion at the 
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upstream end of the segment. To make the discussion clear, recall that the slug 
input problem applying to a 1-D static pond is defined as 

dt dx2 * (16) 

C(x,0) = %o(x) ( 1 7 ) 

C(x,t)= 0 
χ —» 00 

(18) 
dC(x,t) 

dx x-0 ' (19) 

where M is the total amount of pollutant mass (slug input), and A is the flow 
cross-sectional area of the river. The solution of this slug input problem can be 
easily obtained using the Laplace transform: 

„ . , M/A ( x2 „ \ 
C ^ = 743STexP^-^'J (20) 

At this point, the river memory length is defined. For a given error tolerance or 
significant level a, the river memory length, Tm, is the time period taken by the 
solute mass from the time t = 0 when it is introduced into the river at the upstream 
end instantaneously to the time that 100 (1 - a)% of the solute mass has disap
peared from the river reach L due to advection, dispersion, and biochemical 
reactions (see Figure 2). Advection, dispersion, and decay reduce the amount of 
solute mass in the reach. Therefore, if the first-order decay term is neglected, then 
the computed memory length will be longer and form an upper bound. By 
neglecting the first-order decay term in equation (20), the upper-bound of the 
memory length of a given river segment can be written as 

C(x,t) 1 (_jL) 
M/A V4JIDÎ C X P [ 4Dt) (21) 

Equation (21) has the form of a normal distribution with mean μχ = 0 and standard 
deviation σχ = (2Dt)0'5. Since the advection and dispersion mechanisms are not 
interactive for equation (1), the superposition method can be invoked to find the 
upper bound of the memory time. That is, a slug mass is poured into the river at 
the upstream end at time t = 0, and will be moved to position x = Xm at time Tm 

with changed shape. This simultaneous process can be considered to be super
position of two steps. First, the slug input is moved to position x = Xm due to 
advection, and second, the rectangular input shape changes to a normal-
distributed shape due to dispersion. Referring to Figure 2, the memory time Tm 

can be defined as 
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Figure 2. Estimation of river memory time by superposition method. 

m= u (22) 

where Xm is the distance at which 100 (1 - a)% of the slug mass observed at the 
upstream end at t = 0 has disappeared from the river reach at time Tm. Let the error 
level (or significance level) be a = 0.001 which occurs three standard deviations 
away from the mean. Then 

Xm = L + 3ar = L + 3V2DTm 

Substituting equation (23) into equation (22) and solving for Tm, one gets 

_uL + 9D + [(uL+ 9D)2-L2u2 ] V2 

2 _ 

(23) 

(24) 

Tm in equation (24) is the upper bound of the memory time for a given river for a 
given error tolerance of 0.001, because the first-order decay term is neglected in 
the calculation. 

As an example, assume a river reach is L = 1.865 miles. The memory time for 
D = 50 ft2/sec and u = 1 mile/day, is 142.4 hours and for u = 5 miles/day and D = 
50 ft2/sec is 15.37 hours. Thus, the value of n, defined in the boundary condition 
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(3), can be set to the next nearest integer of the computed TJAT. It is seen from 
equation (24) that the upper bound of the memory time of a river is determined by 
the average river velocity, dispersion coefficient, and the river reach length. The 
model can be updated with the most recently recorded data at a finite memory 
time. 

For assumed future BOD values at the observation station, the model can also 
be used to predict the river quality profiles. Since the basic solution given by Van 
Genuchten and Alves is an accurate solution for the initial and boundary condi
tions specified, it is expected that this model will retain the same accuracy if the 
observations are accurate and the observation interval is small enough [8]. Com
putations in the following two examples show that when ΔΤ = 1 hour, the model 
yields rather accurate results as compared with some analytical solutions and 
numerical solutions. 

PARAMETER ESTIMATION 

The model has two parameters, D and K .̂ These parameters can be estimated 
with observations using the Powell search method [11], which is a nonlinear 
optimization method and uses only the objective function values. The objective 
function can be defined as 

n m 

;-i ;-i (25) 

where C(Xj,t;) and Co(Xj,t;) are the computed and observed BOD concentration 
values, respectively, at Xj and t;, m is the number of observation points along the 
river, and n is the number of readings at each observation point. Given some initial 
values of D and K^ the value of C(x,t) can be computed using equation (12). The 
nonlinear optimization technique can then find the set of parameters that minimize 
the objective function (mean square errors) given in equation (25). 

ILLUSTRATIVE EXAMPLES 

Example 1 

As a comparison, the parameters used by Dresnack and Dobbins in their 
example 1 and their results obtained using a finite difference method, referred to 
as the DDM model, were used here [12]. In their example 1, they considered three 
different cases for the dispersive coefficient, D = 0,150 and 1290 ft2/sec, and gave 
Ki = 0, u = 16 mile/day and the upstream boundary was C(0,t) = 37 + 13 cos(2jtt) 
PPM. The computed results, using N1AM, equation (12), for ΔΤ = 1 hr, are given 
in Table 1. The computed BOD values, which are out best interpolated values 
from Figure 7 by Dresnack and Dobbins, are also given in Table 1. These results 
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Table 1. Comparison of Computed BOD Concentration Profiles 
between the DDM Model and the N1 AM Model 

Time 
(Hours) 

120.00 
120.00 
120.00 
120.00 
120.00 
120.00 
120.00 
120.00 
120.00 
120.00 

X 
(Miles) 

4.00 
8.00 

12.00 
16.00 
20.00 
24.00 
28.00 
32.00 
36.00 
40.00 

BOD Concentration (PPM) 

Case 1 

N14M 

35.34 
24.62 
38.73 
48.95 
35.35 
25.48 
38.60 
48.13 
35.48 
26.28 

DDM 

37.0 
24.5 
37.0 
48.8 
37.0 
25.5 
36.5 
48.0 
36.5 
25.9 

Case 2 

N1AM 

35.85 
27.37 
37.38 
44.19 
37.07 
31.65 
36.69 
40.97 
37.43 
34.10 

DDM 

37.0 
27.5 
37.0 
44.2 
37.0 
32.0 
36.5 
40.8 
36.5 
34.6 

Note: Case 1 : D = 150 (sq. ft./sec); Case 2: D = 1290 (sq. ft./sec); DDM = finite difference 
Casemodel (Dresnack and Dobbins, 1968 [12]); N1AM = the new 1-D analytical 
model. 

are plotted on Figure 3. It is seen from Table 1 and Figure 3 that the computed 
results by the two methods are almost identical, except slight deviations at the two 
ends of the given x range. Unfortunately, the BOD values between x = 0 and x = 
4 miles were not given in Dresnack and Dobbins' paper and no comparison can be 
made for that practical range. In general, the analytical solution, equation (14), 
was found to be simple, accurate, and easy to apply as compared with the 
Dresnack and Dobbins model. 

Example 2 

To test the model of equation (12) with the analytical model of equation (15) 
under the boundary equation (8), let K̂  = 0.25/day, u = 16 mile/day, D = 50ft2/sec, 
and ΔΤ = 1 hour. Assuming the upstream BOD concentration is a constant, C(0,t) 
= 37 ppm. Computed results obtained by using equation (12) and (15) are virtually 
the same. BOD distribution profiles at t = 0.5, 1, 2, and 12 hours are plotted in 
Figure 4. It is clearly shown in Figure 4 that as t increases, the sharp front becomes 
widely spread due to the dispersion action and the maximum concentration 
declines linearly due to the first order reaction. 
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« 

O Q A rr f^ 

DISTANCE ( U I L E ) 

NOTE: TIME T = 0.5, 1, 2, 12 HOURS; U = 16 MILES/DAY; D = 50 FT2/SEC; Ki 
0.25 1/DAY; *T = 0.5; +T = 1 ; 0T = 2, AT = 12 HOURS. 

Figure 4. BOD concentration profiles. 

Example 3 
To test the general model given by equation (12) and to illustrate the propaga

tion of the source pollutant as a function of time and space, let K! = 0.25 day, D = 
50 ft2/sec, u = 5 mile/day, and ΔΤ = 1 hour. Assume sixty observations are 
available and are calculated by C(0,t) = 37 + 13 sin(6jtt) (ppm), t is measured in 
days, and the initial BOD concentration is Q = 10 ppm. The BOD concentration 
values over time and space are plotted in Figure 5. If the average velocity changes 
to u = 1 mile/day and all other specifications are kept the same, then the BOD 
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' 2 . ( 5 

DI STANCE ( H U E ) 

NOTE: Ki = 0.25 1/DAY; D = 50 FT/SEC; U = 5 MILES/DAY; Ci = 10 PPM, C(0,t) 
3 7 + 1 3 C O S ( 6 J I T ) , P P M . 

Figure 5. BOD concentration distribution. 

concentration profiles are recalculated and plotted in Figure 6. Figures 5 and 6 
clearly show that the advection velocity is the most important parameter affecting 
the BOD profiles in a given river. A memory time was not calculated in this 
example because the length of the river segment was not specified. 

CONCLUSIONS 

The model can be easily updated when new observations become available. 
This can be done through computer programming. Once a new observation is 
obtained, the first observation value in the previous input series will be dropped, 
and the new value inserted at the end of the series (a stack), and a new river quality 
profile for that time can be computed. On the other hand, by assuming some future 
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Figure 6. BOD concentration distribution. 

BOD values at the upstream end, the future river quality profiles can be computed 
by using the assumed values. This would be very useful for predicting the effects 
of planned future activities. 

The following conclusions are drawn from this study: 

1. With the use of the method of superposition, a general solution to the 1-D 
advection-dispersion equation (ADE) was obtained and is given by equa
tion (12). The solution can be applied to any type of Dirichlet boundary 
condition, especially for discrete time-dependent input values at the 
upstream boundary. 
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2. The analytical model can be used to simulate 1-D river quality problems 
accurately. 

3. An upper-bound memory length of a river is defined. The finite memory 
definition permits easy updating of the N1AM model with availability of 
new information and easy forecasting of BOD profiles in a river for any 
planned future activities. 

LIST OF SYMBOLS 

A 
AC 
ΔΤ 
ox 

μ* 
C 

Q. 
Ci 
D 

Κχ 
k 

M 
n 
L 
t 

T 
U 

X 

Xm 
exp 
erfc 

= cross-section area of a river (L2) 
= difference of BOD concentration between two observations (ML"3) 
= constant interval between two observations (T) 
= standard deviation of the variable x (L) 
= mean of the variable x (L) 
= BOD concentration (ML3) 
= constant BOD concentration at the upstream end (ML3) 
= constant BOD concentration at t = 0 (ML"3) 
= dispersion coefficient (L2!"1) 
= first-order decay coefficient (T1) 
= time step (T) 
= mass of the slug input (M) 
= number of observations 
= length of a river reach (L) 
= time(T) 
= memory time of a given river (T) 
= constant average velocity (LT1) 
= distance from the upstream end (L) 
= memory length of a given river (L) 
= exponential function 
= complementary error function 
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