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ABSTRACT 
An analytical solution is presented which allows one to calculate the vertical 
temperature distribution in deep water bodies such as lakes and reservoirs where 
inflows and outflows are negligible. The solution is based on a linearization of 
the surface heat exchange term. The details of the linearization and the rationale 
for its use are presented. The solution is valid for both variable and constant 
meteorological conditions. Comparisons with both field observations and 
laboratory data are shown to verify the model. 

INTRODUCTION 
The prediction of vertical temperature distribution in lakes or large water bodies 
has received attention in the literature throughout the years. It is an important 
parameter in the analysis of these systems. Dissolved oxygen content, suspended 
solids, dissolved mineral content, and biological activity are all functions of 
temperature. Therefore, accurate prediction of the temperature distribution in 
a water body will allow better understanding of the ecology of the system. 

Dake and Harleman developed a one-dimensional model for vertical 
temperature distribution in a deep stagnant water body [1]. They developed 
analytical solutions for three cases by specifying mathematical functions for the 
net insolation and the surface heat losses. No detailed physical rationale for 
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these cases was given. Comparison of the models with both field and laboratory 
experiments was generally good. The model also accounts for bouyant mixing 
by generating a surface mixed layer when the system is unstable. This approach 
neglects any advective heat transfer so inflows and outflows are negligible. 

Snider and Viskanta also developed a one-dimensional model for the vertical 
temperature distribution in stagnant water bodies [2]. They present an 
analytical solution based on a linearization of the net heat exchange at the 
air-water interface. This linearization is based on the difference between the 
surface water temperature and the ambient air temperature. No details of the 
linearization were given. A three term exponential decay equation was used for 
the volumetric rate of absorption of radiant energy by the water. The model 
agreement with laboratory data was very good. 

The objective of this study is to present an analytical solution for the vertical 
temperature distribution in large stagnant water bodies which takes into account 
constant or variable surface energy conditions. The model contains no fitted 
parameters. The solution is based on a linearization of the surface heat 
exchange term. The linearization is described in detail and the rationale for its 
use as compared to other methods is described. This method has previously 
been shown to predict temperature variations in rivers [3]. Comparison with 
published data is used to verify the model. 

SURFACE HEAT EXCHANGE 
The major contribution to the vertical temperature distribution is the net 

surface heat exchange. The net exchange (H) can be written as 

H = Hj - HBR - H c - HE - HA (1) 

Here, Ht = net incoming short and long-wave radiation actually absorbed at the 
surface, H c = conduction heat loss, HE = evaporative heat loss, and HA = 
advected heat loss. 

H, = ßl0 (2) 

where I0 = net incoming short- and long-wave radiation which is absorbed by the 
water body and ß = fraction absorbed at the surface. 

HBR = ea(Ts+A)4
 ( 3 ) 

where e = emissivity of water, a = Stefan-Boltzmann constant, Ts = temperature 
of the water surface, and Δ = scale factor to shift temperature to an absolute 
scale. 

HE =pUX(e T -e a ) (4) 

where p = density of water, U = wind speed function, λ = latent heat of 
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vaporization of water, eT = saturated vapor pressure of water at the water 
surface temperature, and ea = actual vapor pressure of water in air. 

(Ts - T„) 
H c - C i ( e T - e a ) H E ( 5 ) 

where Ta = dry-bulb air temperature and 

Cx = 0 . 6 1 ~ (6) 
ratm 

where P = actual atmospheric pressure above the water surface and Pa t m = 1 
atmosphere pressure in the same units as P. HA is assumed small and is 
neglected. A more detailed description of the above terms is given elsewhere [4]. 

Any analytical solution to transient temperature distributions is hindered by 
the non-linearity of the back radiation and vapor pressure terms. To overcome 
this obstacle, a linearization of the NB R, H c , and HE terms is undertaken. These 
terms are expanded in a Taylor series expansion about a base temperature Tb 
and terms larger than first order are neglected. It has been shown that this is 
the optimum linearization method when the base temperature chosen is the 
initial surface water temperature [5]. 

H ~ 0 I O + T - 5 T S (7) 

y = -ea(Tb + Δ)4 - PUX[ (eTb - ea) + C^T, - Ta) ] + 4eaTb(Tb + Δ)3 

9e 
+ P U X [ ( ^ L ) T b + C 1 ] (8) 

9eT 
δ = 4ea(Tb + Δ)3 + PUA[ ( — )Ύχ> +C,]. (9) 

SOLUTION OF GOVERNING 
DIFFERENTIAL EQUATION 

The differential equation which describes the vertical temperature 
distribution in a large water body is 

riT Λ^τ Ϊ a 

al·«^-^1-«·"" (10) 

where z = vertical distance in water from the surface, a = thermal diffusivity of 
water, t = time, Cp = isobaric heat capacity of water, and a = extinction 
coefficient for radiation penetration in water. 
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The initial condition is 

@t = 0 T = T0 (11) 

This corresponds to the physical situation in spring where the entire water body 
is at a uniform temperature. 

The boundary conditions are 

z -> °° T -> finite (12) 

z = 0 0 Ι ο + γ - δ Τ = - p C p « | J (13) 

Equation (12) states that the solution must exist for the entire depth of the lake 
and equation (13) states that the net heat exchange at the surface equals the 
heat conducted into the water. Here I0 is assumed constant. 

The solution to equation (10) under these conditions is 

T = § + ̂ [ e r f ( W ) + e C Z + C 2 a t e r f c ( W + C ^ 

^ ^ V S T i e r f c C ^ ) - . - ^ - » 

erfc(av^r - ~ ^ ) +^ea2<*t+a2erfc(aV5F +^j=)\ (14) 

A = - ^ ( l - ß ) (15) 

C = - ^ — (16) 

βΐρ + γ , Ν 
D = - 7 T - (17) 

If C = 0, which corresponds to constant meteorological conditions, the 
solution becomes 

Τ - Τ ο + 20[ν«.-.^^,] 
I— z* VOt e " 4o:t _ Z_e » - Z 

7T 2 

^ [ 2 . ν δ Γ ^ ( ^ ) - - + ^ β · 

e r f c ( a V S r - ^ ) + ^ - + « e r f c ( a V 5 r ^ - ) ] (18) 
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Dake and Harleman noted that at some stage in the yearly cycle, the 
temperature will increase with depth to some maximum temperature and then 
decrease as you proceed further in depth [1]. The resulting density distribution 
in this surface region is unstable and vertical mixing will take place to some 
finite depth causing a surface mixed layer. To calculate this depth (h), an 
energy balance yields (1) 

/ ( T - T m ) d z = 0 (19) 
o 

@z = h T = Tm (20) 

where Tm = temperature of the surface mixed layer. 
Equations (19) and (20) allow one to calculate h and Tm whenever this 

unstable situation arises. 

COMPARISON WITH EXPERIMENTAL DATA 
To test the model, it was compared with both field observations and 

laboratory data previously reported in the literature [1,6] . Goldman and 
Carter measured vertical temperatures in Lake Tahoe for a 120-day period [6]. 
Dake and Harleman reported fairly constant meteorological and incoming 
radiation conditions during the time period of the study [1]. For this data, 

1 W a = 0.05 m , ß = 0.40, δ = 0, and γ=1.45 X Ι Ο 2 - ^ . Since δ =0, C = 0, equations 
m 

(18), (19), and (20) were used. As shown in Figure 1, agreement with field 
observations is very good and in almost every case is much less than 1°C. The 
solution is sensitive to the value of a used and a more accurate description of a 
would result in even better agreement. 

Dake and Harleman also report laboratory data [1]. Under these conditions, 
infrared lamps were used to supply a constant incoming radiation and the 
vertical temperature distribution was measured for a four-hour period. Figure 2 
shows model predictions and experimental results. For this case, a = 1.0 m_1, 

W W β = 0.75, δ = 19.46 2 , , and γ = 509.47—ΐ. γ and δ were determined for m *k m 

this case by generating the surface heat losses according to Dake and Harleman's 
formula (see their equation (24)), and then plotting this result versus surface 
water temperature. In this case, the surface was stable and equation (14) was 
sufficient. As seen from Figure 2, the results are again generally very good. The 
worst case occurs after twenty-four hours. This again could be attributed to the 
sensitivity of the solution upon the value of a chosen. 
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Figure 1. Model prediction and experimental results for Lake Tahoe. 
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CONCLUSIONS 
An analytical equation is presented which describes the vertical temperature 

distribution in large water bodies with negligible advection. The solution 
contains no fitted parameters. The equations presented are based on a 
linearization of the surface heat losses. The linearization is shown in detail and 
the rationale for its use is explained. 

The solutions presented allow one to accurately determine vertical 
temperature distributions from a knowledge of the optical characteristics of 
the water, the incoming radiation intensity, and the meteorological conditions 
at the surface. 
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Figure 2. Model prediction and experimental results for a laboratory system. 
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